Wyoming Beef Cattle roducers Survey ~ Final Report ~

J une 2006

University of Wyoming
Department of Agricultural and Applied Economics

Amy Nagler

University of Wyoming
Sian Mooney
University of Wyoming
Chris Bastian
University of Wyoming
John P. Hewlett
University of Wyoming

Ben Aldridge

University of Wyoming

Brent Allen Sarchet

University of Wyoming

Wendy Umberger
 Colorado State University

Marshall Frasier
Colorado State University

Steven I. Paisley

University of Wyoming
Michael A. Smith
University of Wyoming
Padmaja Ponnameneni
University of Wyoming

David T. Taylor
University of Wyoming
Thomas Foulke University of Wyoming

Abstract

A survey of Wyoming cattle producers was undertaken in 2005 to identify the industry's current production practices, management response to adverse events such as drought and attitudes towards emerging industry trends and new production alternatives. This report presents descriptive statistics for all questions asked of producers and is a comprehensive overview of all information gathered during the survey effort.

Acknowledgements

Funding for this project was provided by the University of Wyoming Agricultural Experiment Station Competitive Grants Program, the Wyoming Business Council Agribusiness Division, the Lowham Endowment Fund, and the University of Wyoming Department of Agricultural and Applied Economics.

Special thanks to Mr. Dick Coulter, National Agricultural Statistics Service for implementing the survey and providing advice with the initial concept and design.

Results and opinions expressed in this document are those of the authors' and do not necessarily reflect those of the funding agencies.

Table of Contents

Introduction 1
Survey Design and Methods 1
Survey Instrument 1
Population and Sample Design 2
Administration 2
Analysis 2
Objectives 2
Dataset and Coding 2
Data Cleaning. 2
Descriptive Statistics 3
Results 4
Part A: General Ranch Description 4
Land Type and Tenure 4
Gross Annual Sales. 7
Herd Management Practices 10
Ranch Expenses 13
Family and Non-Family Labor 15
Feed Sources and Feeding 18
Cattle Markets. 25
Part B: Other Production and Marketing Practices 30
Retained Ownership. 30
Alternative Practices 33
Future of the Beef Industry 40
Part C: Drought and Sagebrush Management 43
Drought Management. 43
Sagebrush Management 53
Part D: Demographic Information 58
References Cited 64
Appendix A: Sampling Population. 65
Appendix B: Data Coding, Cleaning, and Aggregation 66
Appendix C: Statistical Analysis / Output 68
Part A: General Ranch Description 68
Question 1 68
Question 2 70
Questions 3 and 4. 72
Question 5 74
Question 6 75
Question 7. 76
Question 8 80
Question 9 82
Question 10 84
Question 11 87
Question 12 89
Part B: Other Production and Marketing Practices 90
Question 13 90
Question 14 90
Question 15 91
Question 16 92
Question 17 92
Question 18 93
Question 19 96
Part C: Drought and Sagebrush Management 99
Question 20 99
Question 21 100
Question 22 102
Question 23 106
Question 24 106
Question 25 107
Question 26 108
Question 27 109
Question 28 109
Question 18-Extra 110
Part D: Demographic Information 111
Question 29 111
Question 30 111
Question 31 112
Question 32 112
Question 33 113
Question 34 114
Question 35 114
Question 36 115
Question 37 115
Appendix D: Responses to "Other, Specify" 117
Section A: General Ranch Description 117
Question 1, Variable 125: Other types of private land. 117
Question 2, Variable 152: Other ranch enterprises / activities. 117
Question 5, Variable 202: Other herd management techniques. 118
Question 6, Variable 222: Other ranch expenses. 118
Question 8, Variable 318: Other on- and off-farm feed sources. 119
Question 9, Variable 354: Other livestock (peak number owned, months owned, and months fed). 119
Question 10, Variable 369: Other methods for selling calves 119
Question 11, Variable 398: Other Cattle Classes for Sale Weights and Months. 120
Question 12, Variable 413: Other methods for purchasing cattle. 120
Section B: Other Production and Marketing Practices 120
Question 18, Variable 512: Other general farm / ranch practices 120
Section C: Drought and Sagebrush Management 120
Question 21, Variable 570: Other changes experienced as a result of recent drought. 120
Question 22, Variable 640: Other strategies used for each drought year (2000-2004) 121
Question 27, Variable 686: Other methods used to control sagebrush. 122
Appendix E: Survey Instrument 123

Introduction

A survey of Wyoming cattle producers was undertaken in 2005 to identify the industry's current production practices, management response to adverse events such as drought, and attitudes towards emerging industry trends and new production alternatives.

The survey was designed to be implemented via a mailed questionnaire and supplemented by telephone follow-up of non-respondents. A total of 3,000 surveys were sent out and 700 were returned. Recipients that did not respond to the mail survey were proportionally sampled and interviewed by phone. In total, 1,190 surveys were collected, giving a response rate of approximately 40 percent. Data were collected from all types of ranching operations within Wyoming, from small hobby farms to large scale ranches.

This report presents descriptive statistics for all questions asked of producers and is a comprehensive overview of all information gathered during the survey effort. This information will be used in future analyses of Wyoming's cattle industry.

Survey Design and Methods

The Wyoming Beef Cattle Producers Survey was developed to gather information about several aspects of cattle production in Wyoming. Specific production practices, drought impacts and management, sagebrush management, and Extension needs were all topics of interest. This study was based on information gathered during a pilot study of Wyoming cattle producers completed in 2003.

Survey Instrument

The survey instrument included four sections:
Part A: General Ranch Description. Twelve questions asked respondents about their operations and current production practices (e.g., land type and tenure, enterprise practices, herd management practices, typical expenses and labor needs, feed sources, and livestock markets).

Part B: Production and Marketing Practices. This section contained seven questions designed to elicit information about production and marketing practices, for example, ownership retention practices and preferences, niche marketing practices, and beliefs regarding the beef industry.

Part C: Drought and Sagebrush Management. In this section, producers were asked about the specific impacts of the 2000-2004 drought on their production practices as well as the strategies they adopted to mitigate drought. A second focus was on sagebrush abundance and control.

Part D: Demographic Information. Respondents were asked to identify their gender, age, education, and general information regarding their ranch.

The final survey instrument was eight pages in length. A copy of the instrument is attached in Appendix E.

Population and Sample Design

The population of interest for the survey was all Wyoming beef cattle producers. The National Agricultural Statistics Service provided a sampling frame. The producer lists kept by NASS are comprehensive and routinely updated. As their lists are confidential, NASS was responsible for all administration of both mail and phone surveys.
A stratified random sample of 3,000 producers was drawn from the population frame of approximately 4,900 beef producers in the state. Four strata were created based on responses to the 2002 Census of Agriculture: producers with less than 20 head, 20 to 299 head, 300 to 999 head, and 1,000 or more head of bred cows. By stratifying the sample local estimates from individual strata are obtainable and comparisons between strata are possible.

Administration

The survey was administered by the Wyoming office of the USDA's National Agricultural Statistics Service. A modified Dillman design was used. The initial mailing contained a cover letter, survey, and return postage-paid envelope. One week later, all potential respondents received a follow-up postcard reminder asking them to return the survey and thanking them if they had already done so. Two to three weeks after the initial mailing a second mailing was sent out containing a cover letter, another copy of the survey, and a postage-paid return envelope. Three weeks following the final mailing, non-respondents were re-sampled and the full instrument was delivered using telephone enumerators.

Analysis

Objectives

The purpose of this analysis is simply to provide a detailed and complete description of all survey results. Descriptive statistics for each question are presented for all ranches as well as for each of three operation sizes.

Dataset and Coding

Raw survey data were entered into a SAS dataset by NASS employees. Missing variables were coded 0 in the original data set. Checked boxes and affirmative "Yes" answers were coded 1 , unchecked and "No" responses were coded 0 . Variables were labeled (VAR1XX... VAR991XX) in the order in which they appeared on the survey instrument. The completed SAS set of raw data was provided to researchers in the Department of Agricultural and Applied Economics at the University of Wyoming. These data were then checked for possible errors during data cleaning.

Data Cleaning

In order to clean the data for analysis the following aspects were checked:
Discrete variables checked for valid responses. Discrete variables require a response within a specific range. For example, if possible responses are coded ' 1 ' or ' 0 ', the
variable was checked to ensure that only those responses were entered. Any anomalies were compared against the response in the original questionnaire and corrected.

Valid percentages and percentage summations.. Another type of question used in the survey required that responses be in the form a percent. Reported percentages over 100 percent were considered incorrect and were corrected or eliminated from analysis. Many of the questions asking for percentages required that the sum of the responses to equal 100 percent. Sums greater than or less than 100 percent were identified and checked against the original questionnaires.
Non-response coding corrections. Because non responses were coded as zero in the initial data some additional processing was undertaken to recode these responses. SAS will count a zero when performing various operations. This leads to zeros weighing down the averages. To correct for this specific SAS code for each question was written to eliminate non-respondents. This code is noted in Appendix C.
Limiting analysis by operation size. Some producers that responded had fewer than 20 bred cows that were the focus of this survey. These producers were removed from the dataset and will be analyses separately in subsequent analyses.

Specific code for further cleaning of each question is included in Appendix C.

Descriptive Statistics

In most cases simple means and standard deviations for the population as well as for three operation sizes based on strata groups are reported. Where it clarifies categories, results are also reported as average percentage of a total. Questions with a low number of responses may have means that are affected by potential outlier responses. These are noted in the text where appropriate.
Information on sample size, measure of averages or central tendency, and measure of dispersion is reported for each variable where appropriate:
Measures of averages and central tendency. The mean is reported for most continuous variables. For ordinal responses where a mean is not appropriate the median and mode are reported.
Measures of dispersion or spread. The Standard deviation (s) is reported as a measure of dispersion. $\mathrm{s}=0$ when all observations have the same value (i.e. there is no variation). A large standard deviation indicates a high degree of variability. If a variable is approximately normally distributed we expect 68 percent of observations to fall within one standard deviation of the mean and 95 percent to fall within 2 standard deviations of the mean.

Other measures. Minimum and maximum are given for some variables where defining the extremes of a distribution is interesting (e.g. cattle sale weights). Frequencies are provided where relevant to a particular question or item.

Results

The results portion of this report is a detailed descriptive overview of the responses to the 2005 Wyoming Beef Producers Survey. Any additional analysis is beyond the scope of this report-rather, the information presented here is intended as a springboard to future detailed analyses of the relationships reported.

Operations reporting fewer than 20 bred cows were not included in this report; however, data for these 376 respondents are available in the dataset for further analysis. This resulted in 814 responses (out of 1,190) overall used for this report.
Results for each question from the Wyoming Beef Producers Survey instrument are given for all ranches as well as for three operation sizes. Operation sizes were defined according to the number of bred cows reported as typically owned and are defined as: small operations, reporting 20 to 299 bred cows; medium operations, reporting 300 to 999 bred cows; and large operations, reporting 1,000 or more head of bred cows. Of 814 valid responses 610 were from small, 189 from medium, and 15 were from large operations.

Measures of central tendency and dispersion are reported for each variable where appropriate. These measures vary due to the specific nature of each question, however, in most cases number of responses, means, and standard deviations are reported.

Part A: General Ranch Description

Survey respondents were asked to answer twelve general questions describing their cattle operations. Detailed information was collected on land type and tenure; herd management practices; feed sources; ranch income, expenses, and labor needs; and markets for sales and purchases.

Land Type and Tenure

In the first question regarding general ranch descriptions, respondents were asked about their ranchland type and tenure. The total average holdings of private land used by a Wyoming cattle operation responding to this survey is 7,800 acres. Private land used by Wyoming beef cattle producers who responded is predominately pasture and rangeland, approximately two-thirds of which is owned by the producer. Five categories of cropland (for grain, silage, irrigated- and dry-land hay) together consist of less than 6 percent of total private lands. Respondents are more likely to own than to lease every category of cropland (Table 1).
Public lands play an important role in the Wyoming beef cattle operations represented with four acres of public land in use for every five acres of private land. The total average of public land used by cattle operations responding to this survey is 6,333 acres.
Approximately 90 percent of public land used by respondents is federal forest service and BLM (Bureau of Land Management). BLM lands are the most common (67 percent).
State lands account for only 11 percent of the total public land used (Table 1).

Large standard deviations for the mean acres of several land categories are due to the large range of answers for these questions (e.g., from 0 to 350,000 acres for pasture and rangelands owned and leased).

Table 1.
Average number of acres owned and leased across land categories for all ranches.

Land Type	$\begin{gathered} \hline \text { Acres } \\ \mathrm{n}=814^{1} \end{gathered}$	Percent of Total Private Land	Percent Owned vs. Leased
Private Land Owned or Leased			
Pastureland, Rangeland	$\begin{gathered} 7,314^{2} \\ (19,929)^{3} \end{gathered}$	94\%	$\begin{gathered} 67 \% / 33 \%^{4} \\ \mathrm{n}=776^{1}(39)^{3} \end{gathered}$
Harvested Cropland for Grain	$\begin{gathered} 52 \\ (227) \end{gathered}$	< 1%	$\begin{gathered} 80 \% / 20 \% \\ \mathrm{n}=136(36) \end{gathered}$
Harvested Cropland for Silage	$\begin{gathered} 12 \\ (140) \end{gathered}$	< 1%	$\begin{gathered} 78 \% / 22 \% \\ \mathrm{n}=50(40) \end{gathered}$
Irrigated \& Sub-Irrigated Hay	$\underset{(787)}{248}$	3\%	$\begin{gathered} 83 \% / 17 \% \\ \mathrm{n}=434(33) \end{gathered}$
Dry Land Hay	$\begin{gathered} 90 \\ (233) \end{gathered}$	1\%	$\begin{gathered} 79 \% / 21 \% \\ \mathrm{n}=222(39) \end{gathered}$
Other (Specify)	$\begin{gathered} 84 \\ (1,196) \end{gathered}$	1\%	$\begin{array}{r} 80 \% / 20 \% \\ \mathrm{n}=50 \end{array}$
Public Lands		Percent of Total Public Land	
Forest Service	$\underset{(14,264)^{3}}{1,438^{2}}$	23\%	
BLM	$\begin{aligned} & 4,226 \\ & (25,328) \end{aligned}$	67\%	
State Lands	$\begin{gathered} 669 \\ (2,957) \end{gathered}$	11\%	

[^0]Seventy-one (71) respondents specified one or more "other" categories of private land. Fourteen (14) listed their homestead, house or farmyard, 12 specified CRP (Conservation Reserve Program) land, 9 listed fallow or other non-productive lands such as river and creek bottoms, badlands, and ditches, and 2 listed tribal lands. Fourteen (14) responses listed croplands for purposes other than grain or silage (e.g., beans, sugar beets, wheat). Many of the remaining lands listed duplicated categories listed in the survey. A complete list of individual responses for the "other" category are listed in Appendix D.
Survey results for land type and tenure by operation size show larger operations using more of every category of land. The only deviation from this is in forest service lands: medium size operators use more forest service lands than the largest operators (4,743
acres versus 2,067). A high standard deviation for this question suggests that this may be due to a few medium-sized producers with a high number of forest service acres skewing the average to the right (Table 2). High standard deviations for several other categories (private pasture and rangelands, BLM lands) also suggest outliers-reinforced by large median acres for each of these categories (reported in Appendix C).

There were insufficient responses to report percentages of land owned versus leased by operation size.

Table 2.
Average number of acres owned and leased across land categories by operation size.

${ }^{1}$ Sample size.
${ }^{2}$ Mean acres (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

There is no clear correlation between operation size and the ratio of private to public lands used by Wyoming beef cattle operations responding to this survey. The smallest and largest operations both use more private than public land (58 percent and 69 percent respectively) while mid-sized operators report a 1:1 ratio (Table 3).

Table 3.
Percent private versus public land by operation size.

Operation Size	Percent Private Land	Percent Public Land
All Ranches	55%	45%
20 to 299 Bred Cows	58%	41%
300 to 999 Bred Cows	50%	50%
$\geq 1,000$ or more Bred Cows	69%	31%

Summary: Land Type and Tenure. The average Wyoming cattle ranch represented incorporates 7,800 acres of private and 6,333 acres of public lands (an approximate ratio of five acres of private to four acres of public land). There is no direct relationship between this ratio and ranch size, however, larger operations tend to use a higher number of acres per bred cow (28 acres per bred cow for small, 35 acres for medium, and 37 acres per bred cow for large operations). Several of the mean acres reported are skewed by a few producers reporting very large amounts for particular land categories making them appear higher than actual average ranch sizes.

Gross Annual Sales

Wyoming Beef Producer Survey respondents were asked to give detailed information regarding percentages of gross annual sales coming from twelve ranch enterprises or practices. The vast majority of sales for all ranches (82 percent) came from cow-calf enterprises. In fact, 60 percent of all respondents reported 100 percent of their gross sales came from cow-calf operations. Other beef cattle enterprises and practices (backgrounding, feedlot, cow-yearling, club-calf, and replacement heifers) accounted for another 13 percent of sales. Non-beef livestock enterprises (including sheep, horses, goats, dairy cattle, hogs, and buffalo) accounted for 3 percent of sales (Table 4).

Percentages of gross annual sales remained fairly consistent across operation sizes. Producers with 300 to 999 bred cows reported slightly lower sales percentages from cow-calf (76 percent) and higher for cow-yearling (14 percent). None of the largest producers reported sales from feedlot enterprises (Table 4).

Sheep and horses accounted for largest number of non-beef livestock enterprises. Smallsized operations reported the highest frequency of non-beef enterprise in every category. None of the largest producers reported sales from goat, dairy cattle, or hog enterprises (Table 5).

Table 4.
Percentage of gross annual sales from each ranch enterprise or practice.

Ranch Enterprise		By Operation Size		
	All Ranches $\mathrm{n}=803^{1}$	$20-299$ Bred Cows $\mathrm{n}=603$	$300-999$ Bred Cows $\mathrm{n}=185$	$\geq 1,000$ Bred Cows $\mathrm{n}=15$
Cow-Calf	$\begin{gathered} 82 \%^{2} \\ (31)^{3} \end{gathered}$	84% (30)	$\begin{gathered} 76 \% \\ (36) \end{gathered}$	82% (27)
Backgrounding	$\begin{aligned} & 2 \% \\ & (10) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (10) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (11) \end{aligned}$	2% (8)
Feedlot	$\begin{gathered} 2 \% \\ (10) \end{gathered}$	$\begin{aligned} & 1 \% \\ & (10) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (11) \end{aligned}$	0
Cow-Yearling	$\begin{aligned} & 8 \% \\ & \text { (23) } \end{aligned}$	$\begin{aligned} & 6 \% \\ & \text { (20) } \end{aligned}$	14% (31)	$\begin{gathered} 10 \% \\ (26) \end{gathered}$
Club-calves	$<1 \%$ (4)	$\begin{gathered} <1 \% \\ (4.4) \end{gathered}$	$\begin{gathered} <1 \% \\ (<1) \end{gathered}$	$\begin{gathered} <1 \% \\ (<1) \end{gathered}$
Replacement Heifers	1% (6)	$\begin{aligned} & 1 \% \\ & (5.7) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (8.4) \end{aligned}$	1% (4)
Non-Beef Livestock ${ }^{4}$	$\begin{aligned} & 3 \% \\ & (10) \end{aligned}$	$\begin{aligned} & 3 \% \\ & (10) \end{aligned}$	$\begin{aligned} & 3 \% \\ & (11) \end{aligned}$	$\begin{aligned} & 5 \% \\ & (13) \end{aligned}$
Other	$\begin{aligned} & 3 \% \\ & (13) \end{aligned}$	$\begin{aligned} & 3 \% \\ & (14) \end{aligned}$	1% (6)	$\underset{(1)}{<1 \%}$

${ }^{1}$ Sample size. Limiting valid responses to answers summing to 100% dropped 11 respondents (7 from small and 3 from medium operation sizes).
${ }^{2}$ Mean percentages rounded to the nearest whole percent.
${ }^{3}$ Standard deviation (rounded to the nearest whole number).
${ }^{4}$ Includes sheep, horses, goats, dairy cattle, hogs, and buffalo.

Table 5.
Frequency of gross annual sales from other livestock ranch enterprises.

	By Operation Size			
Ranch Enterprise	All Ranches $\mathrm{n}=803^{1}$	$20-299$ Bred Cows $\mathrm{n}=603$	$300-999$ Bred Cows $\mathrm{n}=185$	$\geq 1,000$ Bed Cows $\mathrm{n}=15$
Sheep	49^{2}	34	14	1
Horses	62	45	13	4
Goats	3	2	1	0
Dairy Cattle	3	2	1	0
Hogs	6	6	0	0
Buffalo	0	-	-	-

[^1]One-hundred fifty-five (155) respondents specified one or more "other" sources of annual gross ranch sales. Twenty-eight (28) reported additional beef cattle enterprises or practices not listed such as selling rodeo stock, bulls, and seed stock. Forty-five (45) listings were for hay and another 25 reported pasture leases. Twenty-two (22) responses specified crops such as wheat, grain, and barley. Specialty enterprises listed included honey, horse boarding, chickens, and direct meat sales. Thirty-one (31) respondents listed outside farm or non-farm income or employment. A complete list of individual responses is included in Appendix D.
Summary: Gross Annual Sales. Wyoming beef cattle ranches represented in this survey rely predominately on cow-calf enterprises for gross annual sales, with 95 percent of all gross sales related to beef cattle enterprises. These percentages are fairly consistent for all operation sizes.

Herd Management Practices

Three questions regarding asked respondents to specify their calving, weaning, and general herd management practices.

Respondents reported 72 percent of calving occurring between March and April and 94 percent occurring between February and May. Calves were predominately weaned in October (56 percent) with 92 percent of weaning taking place between September and November (Table 6). These results remain consistent for all operation sizes with between 93 and 95 percent of calving occurring in the early spring (February through March) and 91 to 98 percent of weaning in the fall months of September through November (Table 7).

Table 6.
Percentage of calving and weaning during each month: all ranches.

Month	Percentage of Calving $\mathrm{n}=785^{1}$	Percentage of Weaning $\mathrm{n}=785$
January	10^{2}	$<1 \%$
	$(7)^{3}$	(6)
February	12%	$<1 \%$
	(23)	(6)
March	34%	1%
	(28)	(7)
April	38%	1%
	(30)	(10)
May	10%	$<1 \%$
	(18)	(5)
June	2%	$<1 \%$
	(8)	(5)
July	$<1 \%$	$<1 \%$
	(4)	(6)
August	1%	1%
	(5)	(11)
September	1%	12%
	(8)	(31)
October	$<1 \%$	56%
	(3)	(47)
November	$<1 \%$	24%
	(1)	(41)
December	$<1 \%$	3%
	(1)	(16)

[^2]Table 7.
Percentage of calving and weaning during each month by operation size.

Month	Operation Size					
	20-299 Bred Cows $\mathrm{n}=588^{1}$		300-999 Bred Cows $\mathrm{n}=182$		$\geq 1,000$ Bred Cows $\mathrm{n}=15$	
	Calving	Weaning	Calving	Weaning	Calving	Weaning
January	$1 \%^{2}$ (7) ${ }^{3}$	$<1 \%$ (6)	1\% (6)	1\% (8)	3% (13)	0
February	14% (24)	$<1 \%$ (6)	8% (18)	$<1 \%$ (4)	$\begin{gathered} 7 \% \\ (13.5) \end{gathered}$	0
March	$\begin{gathered} 36 \% \\ (28) \end{gathered}$	1% (6)	$\begin{gathered} 28 \% \\ (26) \end{gathered}$	$\begin{aligned} & 1 \% \\ & (10) \end{aligned}$	$\begin{aligned} & 25 \% \\ & (20.8) \end{aligned}$	0
April	36% (30)	$\begin{aligned} & 1 \% \\ & (10) \end{aligned}$	44% (29)	1% (8)	$\begin{aligned} & 47 \% \\ & (21.0) \end{aligned}$	0
May	$\begin{aligned} & 9 \% \\ & (17) \end{aligned}$	$\underset{(5)}{<1 \%}$	13% (19)	1% (5)	$\begin{aligned} & 15 \% \\ & (15.8) \end{aligned}$	0
June	2% (8)	1% (6)	$\begin{aligned} & 3 \% \\ & (10) \end{aligned}$	0	$\begin{aligned} & 1 \% \\ & (3.0) \end{aligned}$	0
July	$<1 \%$ (4)	$<1 \%$ (7)	1% (4)	0	$\begin{gathered} <1 \% \\ (0.8) \end{gathered}$	0
August	$<1 \%$ (3)	$\begin{aligned} & 1 \% \\ & (10) \end{aligned}$	1% (8)	$\begin{aligned} & 2 \% \\ & (12) \end{aligned}$	$\begin{aligned} & <1 \% \\ & (0.5) \end{aligned}$	0
September	1% (9)	13% (33)	1% (7)	$\begin{aligned} & 9 \% \\ & \text { (27) } \end{aligned}$	0	$\begin{aligned} & 6 \% \\ & (21) \end{aligned}$
October	$<1 \%$ (4)	$\begin{gathered} 56 \% \\ (48) \end{gathered}$	0	$\begin{gathered} 55 \% \\ (47) \end{gathered}$	0	$\begin{gathered} 59 \% \\ (40) \end{gathered}$
November	$<1 \%$ (1)	22% (40)	0	28\% (42)	0	33% (37)
December	$<1 \%$ (1)	$\begin{aligned} & 3 \% \\ & (16) \end{aligned}$	0	$\begin{aligned} & 3 \% \\ & (14) \end{aligned}$	0	1% (4)

${ }^{1}$ Sample size. Limiting dataset to answers summing to 100% dropped 22 respondents from small and 7 from medium operations.
${ }^{2}$ Mean percentages (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Table 8 presents percentages of respondents practicing different herd management techniques for most of their herd each year, for all ranches as well as by three operation sizes. Nearly all of the ranches represented included vaccination (97 percent) and castration (95 percent) as part of their herd management routine. Insect control (73 percent) and de-worming (72 percent) were practiced by three-quarters and pregnancy checks (68 percent), animal identification (66 percent), veterinary consultation (62 percent), and dehorning (56 percent) were practiced by more than half of respondents.
The largest means for every category were for medium and large producers with the highest overall means for producers with 1,000 or more bred cows (Table 8).

Table 8.
Herd management techniques practiced.

Practice		By Operation Size		
	All Ranches $\mathrm{n}=809^{1}$	$20-299$ Bred Cows $\mathrm{n}=605$	$\begin{gathered} 300-999 \\ \text { Bred Cows } \\ \mathrm{n}=189 \end{gathered}$	$\geq 1,000$ Bred Cows $\mathrm{n}=15$
Vaccinate	$\begin{aligned} & 97 \%^{2} \\ & (0.16)^{3} \end{aligned}$	$\begin{aligned} & 97 \% \\ & (0.17) \end{aligned}$	$\begin{aligned} & \hline 99 \% \\ & (0.07) \end{aligned}$	$\begin{aligned} & \hline 93 \% \\ & (0.26) \end{aligned}$
De-worm	$\begin{aligned} & 72 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 68 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 82 \% \\ & (0.39) \end{aligned}$	$\begin{aligned} & 87 \% \\ & (0.35) \end{aligned}$
Insect Control	$\begin{aligned} & 73 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 71 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 78 \% \\ & (0.42) \end{aligned}$	$\begin{aligned} & 73 \% \\ & (0.46) \end{aligned}$
Implant	$\begin{aligned} & 19 \% \\ & (0.39) \end{aligned}$	$\begin{aligned} & 15 \% \\ & (0.36) \end{aligned}$	$\begin{aligned} & 30 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 27 \% \\ & (0.46) \end{aligned}$
Dehorn	$\begin{aligned} & 56 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 52 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 69 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 60 \% \\ & (0.51) \end{aligned}$
Castrate	$\begin{aligned} & 95 \% \\ & (0.22) \end{aligned}$	$\begin{aligned} & 94 \% \\ & (0.23) \end{aligned}$	$\begin{aligned} & 96 \% \\ & (0.19) \end{aligned}$	$\begin{gathered} 100 \% \\ (0.00) \end{gathered}$
Animal ID System	$\begin{aligned} & 66 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 66 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 64 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 80 \% \\ & (0.41) \end{aligned}$
Body Condition Scoring	$\begin{aligned} & 21 \% \\ & (0.40) \end{aligned}$	$\begin{aligned} & 18 \% \\ & (0.38) \end{aligned}$	$\begin{aligned} & 29 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 33 \% \\ & (0.49) \end{aligned}$
Pregnancy Check	$\begin{aligned} & 68 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 63 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 85 \% \\ & (0.36) \end{aligned}$	$\begin{aligned} & 80 \% \\ & (0.41) \end{aligned}$
Breeding Soundness Exam	$\begin{aligned} & 25 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.40) \end{aligned}$	$\begin{aligned} & 40 \% \\ & (0.49) \end{aligned}$	$\begin{aligned} & 40 \% \\ & (0.51) \end{aligned}$
Artificial Insemination	$\begin{aligned} & 18 \% \\ & (0.38) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.38) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.40) \end{aligned}$	$\begin{aligned} & 27 \% \\ & (0.46) \end{aligned}$
Veterinarian Consultation	$\begin{aligned} & 62 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 59 \% \\ & (0.49) \end{aligned}$	$\begin{aligned} & 70 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 87 \% \\ & (0.35) \end{aligned}$
Other	$\begin{gathered} 2 \% \\ (0.14) \end{gathered}$	$\begin{gathered} 2 \% \\ (0.15) \end{gathered}$	$\begin{gathered} 2 \% \\ (0.14) \end{gathered}$	0

${ }^{1}$ Sample size. Eliminating respondents who did not check any techniques dropped 5 respondents. All of these were from small operations.
${ }^{2}$ Mean of binary variable reported as a percentage.
${ }^{3}$ Standard deviation.

Two (2) percent of respondents specified "other" herd management techniques, however most of these responses duplicated listed categories (e.g., branding, ear tags, and specific vaccinations). A complete list of individual responses is included in Appendix D.
Summary: Herd Management Practices. Customary calving and weaning times are standard for most Wyoming beef cattle producers represented by this survey, with most calving done in early spring (March and April) and most weaning in October. This is consistent over every operation size. The majority of ranches practiced multiple herd management techniques with vaccination and castration almost universal. Herd management was more intensive for larger operations.

Ranch Expenses

Respondents were asked to report percentages of total ranch expenses allocated to twelve expense categories in a typical year.
For a typical year, Wyoming beef producers in the sample reported the highest percentage of ranch expenses on alfalfa hay (18 percent) and fuel costs (15 percent). All purchased feed sources (including alfalfa) accounted for 31 percent of expenses. Livestock purchases were reported as 9 percent of total ranch expenses for all producers. Alfalfa, livestock purchases, labor, and fuel were the most variable expense categories across ranches (Table 9).

Many expense categories remained fairly consistent across operation size (e.g., feed other than alfalfa, fertilizer, and veterinary supplies). Small operations reported higher expenses for alfalfa hay (20 percent versus 12 and 11 percent for medium and large operators, respectively). Fuel and machinery repair services as a percentage of total costs decreased as operation size increased. Medium-sized operations had the highest expense percentages related to livestock purchases. Large operations had higher percentages of expenses allocated to labor and general business expenses (interest and professional services) (Table 9).

Two-hundred and sixty-four (264) respondents listed one or more "other" ranch expenses, many of which duplicated or elaborated on categories provided. Eighty (80) expenses listed were for land leases or payments. Other common categories included: 41 listings for various taxes; 30 for ranch supplies; 25 listed ranch maintenance, repair, or general improvements; 24 were related to water and irrigation costs; 17 for equipment or machinery expense; 16 for trucking and freight; and 15 for various insurance costs. A complete list of individual responses is included in Appendix D.

Summary: Ranch Expenses. Feed and fuel costs accounted for the highest percentages of ranch expenses reported by Wyoming beef cattle producers responding to this survey. Many expense categories remained fairly consistent across operation sizes, however the smallest producers reported a higher percentage allocated to purchasing alfalfa hay, medium-size producers had higher costs related to purchasing livestock, and the largest producers reported higher percentages going to pay for labor, interest expense, and professional services.

Table 9.
Percentage of total ranch expenses for all ranches and by operation size.

Ranch Expense		By Operation Size		
	All Ranches $\mathrm{n}=673^{1}$	$20-299$ Bred Cows $\mathrm{n}=508$	$300-999$ Bred Cows $\mathrm{n}=152$	$\geq 1,000$ Bred Cows $\mathrm{n}=13$
Purchased Livestock	$\begin{aligned} & 9 \%^{2} \\ & (14)^{3} \end{aligned}$	$\begin{aligned} & 8 \% \\ & (13) \end{aligned}$	$\begin{gathered} 12 \% \\ (16) \end{gathered}$	$\begin{gathered} 3 \% \\ (5) \end{gathered}$
Alfalfa Hay	18% (21)	$\begin{gathered} 20 \% \\ (22) \end{gathered}$	12% (16)	11% (17)
Grain (Corn, Barley, Oats)	4% (7)	4% (8)	3% (6)	3% (9)
Feed Concentrates	5% (7)	5% (7)	$\underset{(7)}{6 \%}$	4% (4)
Salt and Mineral	4% (6)	4% (6)	4% (4)	5% (7)
Fertilizer, Chemicals, Seeds	$\begin{gathered} 6 \% \\ (9) \end{gathered}$	$\begin{aligned} & 6 \% \\ & (10) \end{aligned}$	6% (8)	8\% (13)
Veterinarian / Health Supplies	$\underset{(5)}{6 \%}$	6% (6)	$\begin{gathered} 6 \% \\ (5) \end{gathered}$	5% (4)
Labor-hired / Contract Labor	$\begin{aligned} & 8 \% \\ & (12) \end{aligned}$	$\begin{aligned} & 6 \% \\ & (12) \end{aligned}$	$\begin{gathered} 12 \% \\ (13) \end{gathered}$	$\begin{gathered} 16 \% \\ (12) \end{gathered}$
Diesel, Gas., Nat. Gas Fuels	$\underset{(12)}{15 \%}$	16% (13)	$\begin{gathered} 13 \% \\ (11) \end{gathered}$	7% (4)
Interest Expense	$\begin{aligned} & 7 \% \\ & (10) \end{aligned}$	$\begin{aligned} & 6 \% \\ & (10) \end{aligned}$	$\begin{gathered} 7 \% \\ (9) \end{gathered}$	$\begin{aligned} & 8 \% \\ & (13) \end{aligned}$
Professional Services	2% (3)	1% (3)	2% (3)	$\begin{aligned} & 6 \% \\ & (11) \end{aligned}$
Machinery Repair Services	$\begin{gathered} 9 \% \\ (9) \end{gathered}$	$\begin{gathered} 9 \% \\ (9) \end{gathered}$	8% (8)	5\% (4)
Other	$\begin{aligned} & 9 \% \\ & (16) \end{aligned}$	$\begin{aligned} & 9 \% \\ & (16) \end{aligned}$	$\begin{aligned} & 7 \% \\ & (13) \end{aligned}$	$\begin{gathered} 19 \% \\ (21) \\ \hline \end{gathered}$

[^3]
Family and Non-Family Labor

The labor needs of a typical Wyoming beef cattle ranch were detailed in a question about family and non-family workers (both paid and unpaid) employed on a full-time or parttime or seasonal basis.

Of all respondents who reported employing family or non-family labor, an average of 1.8 year-round family members and 2.1 part-time or seasonal family members were hired. Respondents also reported hiring 2.1 non-family employees on a year-round and 2.4 on a part-time or seasonal basis. Larger operations hire more of every category of employee (Tables 10 and 11).

Table 10.
Average number of family and non-family labor employed year-round and on a part time or seasonal basis: all ranches.

	Family		Non-Family	
Number Employed	Year Round	Part Time	Year Round	Part Time
For All Respondents $\mathrm{n}=800^{1}$	1.5^{2}	0.8	0.4	0.7
$(1.2)^{3}$	(1.4)	(1.6)	(1.9)	
Of Those Reporting	1.8^{2}	2.1	2.1	2.4
Labor	$\mathrm{n}=688^{1}(1.1)^{3}$	$\mathrm{n}=285(1.7)$	$\mathrm{n}=150(3.3)$	$\mathrm{n}=239(2.9)$
Maximum Number	7^{4}	20	25	20

${ }^{1}$ Sample size. Eliminating respondents who did not answer any part of question 7 or who dropped 14 respondents.
${ }^{2}$ Mean number of employees (rounded to the nearest tenth).
${ }^{3}$ Standard deviation (rounded to the nearest tenth).
${ }^{4}$ Maximum number of employees reported.

Table 11.
Average number of family and non-family labor employed year-round and on a part time or seasonal basis: by operation size.

Number Employed	Producers with 20 to 299 Bred Cows Family Non-Family			
	Year Round	Part Time	Year Round	Part Time
For All Respondents $\mathrm{n}=576^{1}$	$\begin{aligned} & 1.4^{2} \\ & (1.0)^{3} \end{aligned}$	$\begin{gathered} 0.7 \\ (1.2) \end{gathered}$	$\begin{gathered} 0.1 \\ (0.4)^{3} \end{gathered}$	$\begin{gathered} 0.5 \\ (1.4) \end{gathered}$
Of Those Reporting Labor	$\begin{gathered} 1.6 \\ \mathrm{n}=519(0.9) \end{gathered}$	$\begin{gathered} 2.0 \\ \mathrm{n}=203(1.4) \end{gathered}$	$\begin{gathered} 1.3 \\ \mathrm{n}=65(0.6) \end{gathered}$	$\begin{gathered} 2.0 \\ \mathrm{n}=140(2.3) \end{gathered}$
Maximum Number	7^{4}	8	5	20
	Producers with 300 to 999 Bred Cows Family Non-Family			
Number Employed	Year Round	Part Time	Year Round	Part Time
For All Respondents $\mathrm{n}=189$	$\begin{gathered} \hline 1.8 \\ (1.5) \end{gathered}$	$\begin{aligned} & \hline 0.9 \\ & (1.4) \end{aligned}$	$\begin{gathered} 0.8 \\ (1.5) \end{gathered}$	$\begin{aligned} & \hline 1.3 \\ & (2.7) \end{aligned}$
Of Those Reporting Labor	$\begin{gathered} 2.2 \\ \mathrm{n}=157(1.4) \end{gathered}$	$\begin{gathered} 2.2 \\ \mathrm{n}=77(1.4) \end{gathered}$	$\begin{gathered} 2.0 \\ \mathrm{n}=74(1.9) \end{gathered}$	$\begin{gathered} 2.8 \\ \mathrm{n}=88(3.4) \end{gathered}$
Maximum Number	7	10	12	20
	Producers with $\mathbf{1 , 0 0 0}$ or more Bred Cows Family Non-Family			
Number Employed	Year Round	Part Time	Year Round	Part Time
For All Respondents $\mathrm{n}=15$	$\begin{aligned} & \hline 2.5 \\ & (2.0) \end{aligned}$	$\begin{aligned} & \hline 1.8 \\ & (5.1) \end{aligned}$	$\begin{gathered} 5.8 \\ (8.7)^{3} \end{gathered}$	$\begin{aligned} & 3.4 \\ & (4.3) \end{aligned}$
Of Those Reporting Labor	$\underset{\mathrm{n}=12}{3.1}$	$\begin{gathered} 5.4 \\ \mathrm{n}=5(8.2) \end{gathered}$	$\begin{gathered} 7.9 \\ \mathrm{n}=11(9.4) \end{gathered}$	$\begin{gathered} 4.6 \\ \mathrm{n}=11(4.5) \end{gathered}$
Maximum Number	6	20	25	15

${ }^{1}$ Sample size. Eliminating respondents who did not answer any part of question 7 or who dropped 14 respondents.
${ }^{2}$ Mean number of employees (rounded to the nearest tenth).
${ }^{3}$ Standard deviation (rounded to the nearest tenth).
${ }^{4}$ Maximum number of employees reported.

The frequency table (Table 12) of family and non-family labor by month shows the majority of part-time or seasonal employees hired by survey respondents worked between the summer months of June and August. Frequencies for monthly employment by operation size is included in Appendix C.

Table 12.
Frequency of family and non-family labor employed on a part-time or seasonal basis by month: all ranches.

Month	Family	Non-Family
January	12^{1}	16
February	19	22
March	38	44
April	64	74
May	91	95
June	140	123
July	138	122
August	134	111
September	65	71
October	55	61
November	28	24
December	13	7
All Months	79	22

${ }^{1}$ Frequency of a binary variable. Out of 876 respondents who entered a positive amount for number of family and 792 respondents who entered a positive number for number of non-family employed.

Feed Sources and Feeding

The Wyoming Beef Cattle Producers Survey included two questions detailing feed sources and feeding. Respondents were asked to list amounts of feed from on- and offfarm sources other than pasture, and which months each source was typically fed. The survey also asked numbers of several livestock classes owned, number of months each is typically owned, and the number of months cattle were fed on non-pasture sources.

Table 13 provides information on amounts of feed sources coming from on- and off-farm sources as well as which months producers started and finished feeding each source. Hay, alfalfa, and crop aftermath (other than corn) was predominately produced on-farm. An average respondent produced 271 tons of hay, 123 tons of alfalfa, and 68 acres of crop aftermath. High standard deviations for these categories are due to a few producers reporting very high amounts (e.g., 30,000 tons of on-farm grass hay, 1,000,000 bushels of off-farm grain). Maximum amounts for every category are reported in Appendix C. Protein supplements, concentrates, and grain were mainly procured off-farm.
Grass hay, crop aftermath, and grain are generally fed from fall (September or October) through spring (April, May, or June). Feeding of alfalfa, protein supplements, and concentrates typically began in August (Table 13).

Table 13.
On- and off-farm feed sources and months fed: all ranches.

Feed Source	$\begin{gathered} \text { On Farm } \\ \mathrm{n}=733^{1} \end{gathered}$	Off Farm$\mathrm{n}=733$	Total	Months Fed	
				Started	Finished
Grass Hay, Other Hay	$\begin{gathered} 217 \text { tons }^{2} \\ (1,152)^{3} \end{gathered}$	$41 \text { tons }$ (130)	257 tons	Sept. through $\mathrm{n}=568^{1}(4)^{3}$	May $\mathrm{n}=569$
Alfalfa	$\underset{(304)}{123 \text { tons }}$	57 tons (127)	180 tons	Aug. through $\mathrm{n}=489$	May $\mathrm{n}=484$
Protein Supplement	1 ton (10)	18 tons (136)	20 tons	Aug. through $\mathrm{n}=318$ (5)	June $\mathrm{n}=310$
Concentrates	<1 ton (4)	6 tons (24)	6 tons	Aug. through $\mathrm{n}=137$ (4)	June $\mathrm{n}=139$
Corn Stalks / Stubble	7 acres (39)	7 acres (97)	14 ac.	Oct. through $n=52(3)$	April $\mathrm{n}=50$
Other Crop Aftermath	61 acres (294)	12 acres (112)	73 ac.	Sept. through $\mathrm{n}=94(3)$	July $\mathrm{n}=92(4)$
All Grain	$\begin{gathered} 276 \text { bushels } \\ (2,013) \end{gathered}$	$\begin{gathered} 1,567 \text { bushels } \\ (36,956) \end{gathered}$	1,843 b.	Sept. through $\mathrm{n}=130$	June $\mathrm{n}=130 \text { (3) }$
Other	29 responses (350)	6 responses (65)			

[^4]There were insufficient responses to present results for months fed by operation size.
Seventy-six (76) respondents listed one or more "other" feed source. The majority of these responses specified various grazing and pasture sources. Most of the remaining responses (listing silage, specific concentrates and supplements, cake, corn, etc.) duplicated listed categories. A complete list of individual responses is included in Appendix D.

Large operations reported producing a larger percentage of grass and other hay on-farm in comparison to other operations. Ninety-nine (99) percent of hay was produced on-farm for operations with 1,000 or more bred cows, 75 percent for both medium and small operations. Conversely, smaller producers reported producing a larger percentage of alfalfa on-farm (71 percent for small, and 65 percent for medium and large producers). Medium-sized producers had the largest percentages of protein supplements and concentrates from on-farm sources. Large producers did not purchase any corn aftermath and did not produce any concentrates (Tables 14, 15, and 16).

Table 14.
On- and off-farm feed sources: producers with 20 to 299 bred cows.

Feed Source			Total
	$\begin{gathered} \text { On Farm } \\ \mathrm{n}=542^{1} \end{gathered}$	$\begin{gathered} \text { Off Farm } \\ \mathrm{n}=542 \end{gathered}$	
Grass Hay, Other Hay	$\begin{gathered} 94 \text { tons }^{2} \\ (177)^{3} \end{gathered}$	$\begin{gathered} 30 \text { tons } \\ (70) \end{gathered}$	125 tons
Alfalfa	95 tons (237)	39 tons (75)	133 tons
Protein Supplement	$\begin{gathered} 1 \text { ton } \\ (7) \end{gathered}$	16 tons (156)	17 tons
Concentrates	$\underset{\text { (2) }}{ }$	3 tons (14)	3 tons
Corn Stalks / Stubble	6 acres (29)	8 acres (112)	14 acres
Other Crop Aftermath	31 acres (122)	5 acres (49)	36 acres
All Grain	$\begin{gathered} 126 \text { bushels } \\ \text { (938) } \end{gathered}$	$\begin{gathered} 170 \text { bushels } \\ (1308) \end{gathered}$	296 bushels

${ }^{1}$ Sample size. Excluding respondents who did not enter any amount for on- or off-farm feed sources dropped 81 respondents from the dataset for this question. Of these 68 were for small operations.
${ }^{2}$ Mean amounts (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Table 15.
On- and off-farm feed sources: producers with 300 to 999 bred cows.

Feed Source	$\begin{gathered} \hline \text { On Farm } \\ \mathrm{n}=176^{1} \end{gathered}$	$\begin{gathered} \hline \text { Off Farm } \\ \mathrm{n}=176 \end{gathered}$	Total
Grass Hay, Other Hay	$\begin{aligned} & 414 \text { tons }^{2} \\ & (517)^{3} \end{aligned}$	$\begin{gathered} 75 \text { tons } \\ (232) \end{gathered}$	489 tons
Alfalfa	195 tons (404)	106 tons (201)	301 tons
Protein Supplement	$\begin{gathered} 3 \text { ton } \\ (15) \end{gathered}$	21 tons (37)	24 tons
Concentrates	1 ton (8)	11 tons (36)	12 tons
Corn Stalks / Stubble	6 acres (33)	3 acres (24)	9 acres
Other Crop Aftermath	118 acres (409)	$\begin{gathered} 29 \text { acres } \\ (191) \end{gathered}$	147 acres
All Grain	$\begin{gathered} 557 \text { bushels } \\ (2679) \\ \hline \end{gathered}$	$\begin{gathered} 318 \text { bushels } \\ (1835) \end{gathered}$	875 bushels

${ }^{1}$ Sample size. Excluding respondents who did not enter any amount for on- or off-farm feed sources dropped 81 respondents for this question, 13 were from medium operations.
${ }^{2}$ Mean amounts (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).
Table 16.
On- and off-farm feed sources: producers with $\mathbf{1 , 0 0 0}$ or more bred cows.

Feed Source	$\begin{gathered} \text { On Farm } \\ \mathrm{n}=15^{1} \end{gathered}$	Off Farm $\mathrm{n}=15$	Total
Grass Hay, Other Hay	$\begin{gathered} 2,314 \text { tons }^{2} \\ (7,681)^{3} \end{gathered}$	$\begin{gathered} 10 \text { tons } \\ (28) \end{gathered}$	2,324 tons
Alfalfa	$\begin{gathered} 300 \text { tons } \\ (704) \end{gathered}$	160 tons (264)	460 tons
Protein Supplement	7 tons (26)	61 tons (117)	67 tons
Concentrates	0	$\underset{(78)}{27} \text { tons }$	27 tons
Corn Stalks / Stubble	53 acres (181)	0	53 acres
Other Crop Aftermath	453 acres $(1,267)$	80 acres (310)	533 acres
All Grain	$\begin{gathered} 2,413 \text { bushels } \\ (9,020) \end{gathered}$	66,667 bushels (258,199)	69,080 bushels

[^5]Respondents were asked to report the peak number of livestock they typically owned, and the months they were fed on raised or purchased feed (other than pasture) during a typical year. A typical cattle herd for the respondents consisted of 50 percent bred cows, 36 percent steer and heifer calves, 7 percent replacement heifers, 4 percent retained yearlings, and 3 percent fat cows and herd bulls. Bred cows were owned the longest (an average of 11 months out of the year) and fed from non-pasture sources for 5 months of the year. Steer and heifer calves were owned for 5 to 6 months and fed for 2 months (Table 17).

Table 17.
Peak number of livestock typically owned, number of months owned, and months on feed other than pasture for all ranches.

Livestock Class	Peak Number Owned	Percent of Herd	Number of Months Owned	Number of Months Fed
	$\mathrm{n}=814^{1}$		$\mathrm{n}=814$	$\mathrm{n}=814$
Bred Cows	221^{2}	50\%	11^{2}	5^{2}
	$(365)^{3}$		(3)	(2)
Steer Calves	79	18\%	5	2
	(215)		(5)	(3)
Heifer Calves	77	18\%	6	2
	(202)		(5)	(3)
Replacement Heifers	31	7\%	7	3
	(71)		(6)	(3)
Retained Yearlings	19	4\%	2	1
	(94)		(4)	(2)
Fattened Cows	1	< 1%	<1	<1
	(11)		(1)	(1)
Herd Bulls	10	2\%	9	4
	(18)		(5)	(3)
Horses	8	0	7	3
	(19)		(6)	(4)
Other	32	0	1	<1
	(504)		(3)	(2)

${ }^{1}$ Sample size.
${ }^{2}$ Mean number (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

There were 69 respondents who listed one or more "other" livestock classes. The majority of these repeated classes already listed. Additional cattle classes listed included bull calves (13), bull yearlings (3), rodeo stock (3), dairy cows (2), and open cows (1). Additional livestock classes listed included sheep (26) as well as llamas and alpacas, goats, chickens, bucks, hogs, emus, and mules. Three (3) working dogs were also listed.

A high standard deviation for number of other livestock owned is due to two respondents listing 10,000 sheep each. A complete list of individual responses is included in Appendix D.

Cattle herd composition percentages are consistent for small and medium operations with approximately 52 percent bred cows, 35 percent calves, and 7 percent replacement heifers. The largest operations reported slightly fewer bred cows in their herds (44 percent) and more calves (43 percent). Larger operations also reported owning calves longer (5 to 6 months for small, 6 months for medium, and 7 to 8 months for large operations) (Tables 18, 19, and 20).

Table 18.
Peak number of livestock typically owned, number of months owned, and months on feed other than pasture: producers with 20 to 299 bred cows.

Livestock Class	Peak Number Owned $\mathrm{n}=610^{1}$	Percent of Herd	Number of Months Owned $\mathrm{n}=610$	Number of Months Fed $\mathrm{n}=610$
Bred Cows	106^{2}	52\%	11^{2}	5^{2}
	(74) ${ }^{3}$		(3) ${ }^{3}$	(2) ${ }^{3}$
Steer Calves	36	18\%	5	2
	(110)		(5)	(2)
Heifer Calves	35	17\%	6	2
	(67)		(5)	(3)
Replacement Heifers	15	7\%	7	3
	(28)		(6)	(3)
Retained Yearlings	7	3\%	1	1
	(45)		(4)	(2)
Fattened Cows	1	1\%	<1	<1
	(12)		(1)	(1)
Herd Bulls	5	2\%	9	4
	(9)		(5)	(3)
Horses	5	0	7	3
	(11)		(6)	(4)

[^6]Table 19.
Peak number of livestock typically owned, number of months owned, and months on feed other than pasture: producers with $\mathbf{3 0 0}$ to 999 bred cows.

Livestock Class	Peak Number $\mathrm{n}=189^{1}$	Percent of Herd	Number of $\mathrm{n}=189$	Number of $\mathrm{n}=189$
Bred Cows	456^{2}	52%	12^{2}	4^{2}
Steer Calves	$(162)^{3}$		(2)	(2)
	156	18%	6	2
Heifer Calves	(250)		(5)	(3)
	137	16%	6	2
Replacement Heifers	(114)		(5)	(3)
	64	7%	8	4
Retained Yearlings	(90)		(6)	(3)
	46	5%	2	1
Fattened Cows	(136)		(4)	(3)
	1	$<1 \%$	<1	<1
Herd Bulls	(6)		(2)	(1)
	20	2%	10	4
Horses	(13)		(5)	(3)
	13	0	9	3

${ }^{1}$ Sample size. ${ }^{2}$ Mean number (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).
Table 20.
Peak number of livestock typically owned, number of months owned, and months on feed other than pasture: producers with $\mathbf{1 , 0 0 0}$ or more bred cows.

Livestock Class	Peak \# Owned $\mathrm{n}=15^{1}$	Percent of Herd	Months Owned $\mathrm{n}=15$	Months Fed $\mathrm{n}=15$
Bred Cows	$1,926^{2}$	44%	12^{2}	4^{2}
Steer Calves	$(1642)^{3}$		(1)	(2)
Heifer Calves	872	20%	8	2
	(699)		(4)	(4)
Replacement Heifers	1,000	23%	7	2
Retained Yearlings	(983)		(4)	(3)
	287	7%	10	4
Fattened Cows	(234)	4%	(5)	(3)
	170		(5)	1
Herd Bulls	(365)	0	-	(2)
	0		10	0
Horses	-	2%	(5)	-
	85	0	10	4

[^7]Summary: Feed Sources and Feeding. A typical Wyoming beef cattle ranch responding to this survey fed out 257 tons of grass hay (84 percent of which was produced on-farm) and 180 tons of alfalfa (68 percent from on-farm sources). Herds were fed grass hay, crop aftermath, and grain from fall through early spring while herds were generally started on alfalfa, protein supplements, and concentrates in August. Larger operations produced nearly all of their grass hay on-farm while smaller operations produced a larger percentage of their own alfalfa.

Cattle Markets

Three questions on the Wyoming Beef Producers Survey asked about livestock sale and purchasing market methods as well as typical sale weights and months for several livestock classes.

Respondents were asked to report the percentage of calves they sold using different market methods. The sale barn is the most common sales market institution for all ranches responding, accounting for 54 percent of all calf sales. Private sale or treaty (27 percent) and video auction (14 percent) accounted for most other sales (Table 21).
Sales methods varied by operation size. Larger operation size was related to a larger percentage of calves reported sold by private sale or treaty, retained slaughter sold live, and retained slaughter sold on-the-grid in-the-meat. Larger operations reported fewer sales via the sale barn. Medium-sized producers reported the most sales via video auction. The majority of small producers preferred the sale barn (Table 21).

Table 21.
Market methods for calf sales.

${ }^{1}$ Sample size. Limiting responses to producers who gave answers with percentages summing to 100% dropped 9 respondents (7 from small and 2 from medium operation sizes).
${ }^{2}$ Mean percent (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).
${ }^{4}$ Includes forward cash contracts, futures and options, website listing, retained slaughter-sold live, retained slaughter-sold on the grid in the meat, retained-direct grass-fed or natural, and retained-direct certified organic.

Table 22 shows the frequency of calf sales through market methods other than sale barn, private treaty, or video auction were predominately retained slaughter-sold live, on-thegrid, or natural grass-fed. Every non-traditional calf sales method was more popular with smaller operations. Producers with 1,000 or more bred cows reported no forward contract, futures, website, retained natural, retained organic, or other sales.

Table 22.
Frequency of non-traditional sale methods for calves.

Calf Sale Method	By Operation Size			
	All Ranches	$20-299$ Bred Cows	$300-999$ Bred Cows	$\geq 1,000$ Bred Cows
Forward Cash Contracts	9^{1}	8	1	0
Futures and Options	3	1	2	0
Website Listing	11	7	4	0
Retained Slaughter- Sold Live	34	21	11	2
Retained Slaughter- On-the-Grid In-the-Meat	20	10	9	1
Retained-	20	12	8	0
Direct Grass-fed or Natural	2	1	1	0
Retained- Direct Certified Organic				

${ }^{1}$ Frequency count of percent of sales coded as a binary variable.

Thirty (30) respondents listed one or more "other" sales methods. The majority of these duplicated or elaborated on categories provided. Several also indicated that animals were kept for meat or herd replacement. Additional sales markets listed included bull test auctions, consignment sales, cattle buyers, and ranch auctions. Three (3) respondents reported selling calves directly to feedlots but did not indicate a specific method. A complete list of individual responses is included in Appendix D.
Respondents were asked to report typical sale or maintenance weights by cattle class as well as the month each class of cattle was most typically sold. Sale weights for all ranches averaged 582 lbs to 547 lbs for weaned calves, 716 lbs for backgrounded calves, 898 lbs for long yearlings, and 845 lbs for replacement heifers. Weaned calves typically sold in September, backgrounded calves in May, and long yearlings in August (Table 23).

Table 23.
Typical sale or maintenance weights and month typically sold by cattle class for all ranches.

Cattle Class	n	Typical Weight	Minimum and Maximum Weight		Month Sold
Weaned Steer Calves	715^{1}	$\begin{gathered} 582 \mathrm{lbs}^{2} \\ (94)^{3} \end{gathered}$	320 lbs	1,250 lbs	September (3) ${ }^{3}$
Weaned Heifer Calves	685	547 lbs (88)	300 lbs	1,150 lbs	September (3)
Backgrounded Calves	52	$\begin{gathered} 716 \mathrm{lbs} \\ (172) \end{gathered}$	400 lbs	1,300 lbs	May (4)
Long Yearlings	97	898 lbs (158)	300 lbs	1,400 lbs	August (2)
Finished Cattle	47	$1,227 \mathrm{lbs}$ (119)	900 lbs	1,500 lbs	June (3)
Replacement Heifers	208	$845 \mathrm{lbs}$ (177)	500 lbs	1,200 lbs	July (4)
Bred Cows	300	1,199 lbs (119)	800 lbs	1,800 lbs	August (4)
Fattened Cows	85	$1,259 \mathrm{lbs}$ (156)	950 lbs	1,700 lbs	August (3)
Herd Bulls	376	1,799 lbs (260)	950 lbs	$3,000 \mathrm{lbs}$	August (3)
Other	55	$\begin{gathered} 1,063 \mathrm{lbs} \\ (410) \\ \hline \end{gathered}$			August (3)

${ }^{1}$ Sample size. Requiring some positive answer to either weight or month sold for any cattle class dropped 59 respondents. Minimum weight was set at 100 lbs for all calves and yearlings and 500 lbs for all adult cattle classes to eliminate nonsensical answers. Answers were eliminated for months sold that were not $1-12$. This further reduced n for individual cattle classes as indicated in Table.
${ }^{2}$ Means (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number). Standard deviation for months was calculated from variable for months coded from 1-12.

Fifty-seven (57) respondents listed one or more "other" cattle class for sale or maintenance weights. The most common listed classes were cull cows (16), open cows (5), dry cows (5), bulls (5), and bull calves (4). A complete list of individual responses is included in Appendix D.
Sale or maintenance weights and months sold did not vary much by operation size, however smaller operations reported slightly higher weights for calves and yearlings despite the fact that the largest operations generally sold calves one month later in the year (Table 24).

Table 24.
Typical sale or maintenance weights and month typically sold for cattle classes by operation size.

Cattle Class	Operation Size					
	20-299 Bred Cows		300-999 Bred Cows		$\geq 1,000$ Bred Cows	
	Typical Weight	Month Sold	Typical Weight	Month Sold	Typical Weight	Month Sold
Weaned Steer Calves	$\begin{gathered} 591 \mathrm{lbs}^{2} \\ \mathrm{n}=540^{1}(99)^{3} \end{gathered}$	$\underset{\mathrm{n}=519}{\text { September }^{1}}$	$\begin{gathered} 555 \mathrm{lbs} \\ \mathrm{n}=161(71) \end{gathered}$	September $\mathrm{n}=155$ (3)	$\begin{gathered} 532 \mathrm{lbs} \\ \mathrm{n}=14(35) \end{gathered}$	$\begin{aligned} & \text { October } \\ & \mathrm{n}=11(3.1) \end{aligned}$
Weaned Heifer Calves	$\begin{gathered} 555 \mathrm{lbs} \\ \mathrm{n}=520(92) \end{gathered}$	September $\mathrm{n}=486$ (3)	$\begin{gathered} 524 \mathrm{lbs} \\ \mathrm{n}=151(68) \end{gathered}$	September $\mathrm{n}=144 \text { (3) }$	$\begin{aligned} & 494 \mathrm{lbs} \\ & \mathrm{n}=14(40) \end{aligned}$	October $\mathrm{n}=9(3)$
Backgrounded Calves	$\begin{gathered} 714 \mathrm{lbs} \\ \mathrm{n}=37(164) \end{gathered}$	$\begin{gathered} \text { May } \\ \mathrm{n}=31 \text { (4) } \end{gathered}$	$\begin{gathered} 659 \mathrm{lbs} \\ \mathrm{n}=12(116) \end{gathered}$	$\begin{gathered} \text { May } \\ \mathrm{n}=11(4.3) \end{gathered}$	$\begin{aligned} & 967 \mathrm{lbs} \\ & \mathrm{n}=3(293) \end{aligned}$	$\begin{gathered} \text { March } \\ \mathrm{n}=2(0) \end{gathered}$
Long Yearlings	$\begin{gathered} 911 \mathrm{lbs} \\ \mathrm{n}=54(195) \end{gathered}$	$\begin{gathered} \text { August } \\ \mathrm{n}=44 \text { (3) } \end{gathered}$	$\begin{gathered} 887 \mathrm{lbs} \\ \mathrm{n}=37(96) \end{gathered}$	September $\mathrm{n}=34(2)$	$\begin{aligned} & 858 \mathrm{lbs} \\ & \mathrm{n}=6(86) \end{aligned}$	August $\mathrm{n}=6$ (3)
Finished Cattle	$\begin{aligned} & 1,216 \mathrm{lbs} \\ & \mathrm{n}=32(140) \end{aligned}$	$\begin{gathered} \text { June } \\ \mathrm{n}=25 \text { (3) } \end{gathered}$	$\begin{gathered} 1,252 \mathrm{lbs} \\ \mathrm{n}=13(46) \end{gathered}$	$\begin{gathered} \text { June } \\ \mathrm{n}=13 \text { (3) } \end{gathered}$	$\begin{gathered} 1,250 \mathrm{lbs} \\ \mathrm{n}=2(71) \end{gathered}$	$\begin{gathered} \text { July } \\ \mathrm{n}=1 \end{gathered}$
Replacement Heifers	$\begin{gathered} 824 \mathrm{lbs} \\ \mathrm{n}=146(185) \end{gathered}$	$\underset{\mathrm{n}=37(4)}{\text { July }}$	$\begin{gathered} 898 \mathrm{lbs} \\ \mathrm{n}=55(146) \end{gathered}$	$\begin{aligned} & \text { August } \\ & \mathrm{n}=23 \text { (4) } \end{aligned}$	$\begin{gathered} 861 \mathrm{lbs} \\ \mathrm{n}=7(173) \end{gathered}$	$\begin{aligned} & \text { May } \\ & \mathrm{n}=3(4) \end{aligned}$
Bred Cows	$\begin{aligned} & 1,200 \mathrm{lbs} \\ & \mathrm{n}=214(131) \end{aligned}$	$\begin{gathered} \text { September } \\ \mathrm{n}=73(4) \end{gathered}$	$\begin{aligned} & 1,197 \mathrm{lbs} \\ & \mathrm{n}=77(80) \end{aligned}$	$\begin{gathered} \text { July } \\ \mathrm{n}=41(4) \end{gathered}$	$\begin{gathered} \text { 1,186 lbs } \\ \mathrm{n}=9(74) \end{gathered}$	$\begin{gathered} \text { July } \\ \mathrm{n}=2(6) \end{gathered}$
Fattened Cows	$\begin{aligned} & 1,261 \mathrm{lbs} \\ & \mathrm{n}=64(167) \end{aligned}$	August $\mathrm{n}=54$ (4)	$\begin{gathered} 1,259 \mathrm{lbs} \\ \mathrm{n}=19(127) \end{gathered}$	August $\mathrm{n}=20$ (3)	$\underset{\substack{\text { n=2 (35) }}}{1,175 \mathrm{lbs}}$	November $\mathrm{n}=2(1)$
Herd Bulls	$\begin{aligned} & 1,796 \mathrm{lbs} \\ & \mathrm{n}=262(277) \end{aligned}$	$\underset{\mathrm{n}=140(3)}{\text { August }}$	$\begin{aligned} & 1,808 \mathrm{lbs} \\ & \mathrm{n}=102(213) \end{aligned}$	$\begin{gathered} \text { August } \\ \mathrm{n}=60(3) \end{gathered}$	$\begin{gathered} 1,796 \mathrm{lbs} \\ \mathrm{n}=12(251) \end{gathered}$	August $\mathrm{n}=6(4)$

[^8]Respondents were asked to report the percentage of purchased cattle acquired using different market methods. As with sales markets, the majority of Wyoming beef producers responding to the survey went to the sale barn (43 percent of sales), or used private sale or treaty (50 percent) to acquire cattle. Again, the sale barn was a more popular market for smaller producers. However, contrary to sales market preference
results, private treaty was also more popular with smaller producers while larger producers were more likely to use video auctions to purchase cattle (Table 25).

Table 25.
Percentage of cattle purchased by market method.

		By Operation Size		
	All Ranches	20-299 Bred Cows $\mathrm{n}=432$	$300-999$ Bred Cows $\mathrm{n}=145$	$\geq 1,000$ Bred Cows $\mathrm{n}=10$
Purchase Method	437^{1}	42%	46%	25%
Sale Barn	$(45)^{3}$	(46)	(45)	(43)
Video Auction	2%	2%	3%	5%
Private Sale / Treaty	(13)	(11)	(15)	(16)
Forward Cash Contracts	50%	52%	45%	50%
Website Listing	(46)	(46)	(45)	(47)
	1%	1%	$<1 \%$	0
	$<1 \%$	$<1 \%$	(4)	-
Other	(1)	(1)	0	0
		4%	3%	-

${ }^{1}$ Sample size. Limiting to those responses that summed to 100% dropped 227 respondents (178 from small, 44 from medium, and 5 from large operation sizes).
${ }^{2}$ Mean percentages (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Thirty-eight (38) respondents indicated one or more "other" methods for purchasing cattle. Several respondents indicated that they rely only on internal replacement. In addition to several duplicated categories, additional markets and methods listed included bull sales (9); private auction (4); classified ads, flyers, or newspaper ads (3); and ranch auctions. A complete list of individual responses is included in Appendix D.
Summary: Cattle Markets. Wyoming cattle producers represented by the survey rely on traditional sale barn and private agreements for the majority of their sales and purchases of livestock. Medium-sized operations reported the highest percentage of sales done via video auctions. There was little variation in sale weights over operation size. Small operations did report slightly higher weights for calves and yearlings despite the fact that large operations tended to sell calves a month later in the year.

Part B: Other Production and Marketing Practices

The second part of the Wyoming Beef Producers Survey asked respondents seven questions regarding other production and marketing practices. Topics included retained ownership of calves, direct marketing to consumers and other non-traditional marketing practices, and about current issued impacting the future of the beef industry.

Retained Ownership

A series of linked questions regarding Wyoming beef producers' practices and beliefs regarding retained ownership of calves asked respondents about their current practices as well as the potential number, location, and distance to calves retained at off-farm feedlots.

Nine (9) percent of all respondents reported currently retaining ownership of calves. There is a clear relationship between operation size and this practice: 6 percent of small, 18 percent of medium, and 27 percent of large operations reported currently retaining ownership (Table 26).

Table 26.
Producers currently retaining ownership of calves.

	By Operation Size		
All Ranches$\mathrm{n}=791^{1}$	20-299	300-999	$\geq 1,000$
	Bred Cows	Bred Cows	Bred Cows
	$\mathrm{n}=593$	$\mathrm{n}=183$	$\mathrm{n}=15$
9\% ${ }^{2}$	6\%	18\%	27\%
(0.28) ${ }^{3}$	(0.23)	(0.39)	(0.46)
${ }^{1}$ Sample size. Excluding respondents who did not answer either "yes" or "no" dropped 23 respondents from the dataset for this question (17 from small and 6 from medium operations). ${ }^{2}$ Mean (of a binary variable reported as a percentage) of respondents reporting "yes" (rounded to the nearest whole percentile). ${ }^{3}$ Standard deviation.			

Of 70 respondents reporting that they currently retain ownership of calves, 63 percent held calves in-state and 37 percent at out-of-state feedlots. The average distance from the home ranch to an in-state feedlot was 73 miles with a maximum distance of 325 miles. The average distance to out-of-state calves was 142 miles with a maximum of 1,000 miles. Small producers who retained calves shipped them a shorter average distance to both in- and out-of-state facilities (Table 27).

Table 27.

Location of and distance to calves retained by producers who currently retain ownership into an off-farm feedlot.

Location		By Operation Size		
	All Ranches $\mathrm{n}=70^{1}$	20-299 Bred Cows $\mathrm{n}=33$	300-999 Bred Cows $\mathrm{n}=33$	$\begin{gathered} \geq 1,000 \\ \text { Bred Cows } \\ \mathrm{n}=4 \\ \hline \end{gathered}$
Percent Held In-State	$\begin{aligned} & 63 \%^{2} \\ & (0.49)^{3} \end{aligned}$	$\begin{aligned} & \hline 70 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 52 \% \\ & (0.51) \end{aligned}$	$\begin{gathered} \hline 100 \% \\ (0.00) \end{gathered}$
Distance From Home: $\begin{array}{r}\text { Average } \\ \text { Maximum }\end{array}$	$\begin{aligned} & 64 \text { miles }^{4} \\ & (85)^{3} \\ & 325 \text { miles } \end{aligned}$	53 miles (83) 325 miles	65 miles (88) 280 miles	146 miles (42) 200 miles
Percent Held Out-of-State	$\begin{aligned} & 37 \% \\ & (0.49) \end{aligned}$	$\begin{aligned} & 24 \% \\ & (0.44) \end{aligned}$	$\begin{aligned} & 48 \% \\ & (0.51) \end{aligned}$	$\begin{aligned} & 50 \% \\ & (0.58) \end{aligned}$
Distance From Home: $\begin{array}{r}\text { Average } \\ \text { Maximum }\end{array}$	142 miles (244) 1,000 miles	$\begin{gathered} 75 \text { miles } \\ (180) \\ 700 \text { miles } \end{gathered}$	$\begin{gathered} 206 \text { miles } \\ (285) \end{gathered}$ 1,000 miles	161 miles (236) 500 miles

[^9]Respondents who reported that they did not currently retain ownership of calves into an off-farm feedlot were asked whether they would consider doing so. Out of these 708 respondents, 31 percent said that they would consider retaining ownership. Larger operation sizes were more likely to consider retaining ownership. Thirty (30) percent of small, 34 percent of medium producers, and 45 percent of large operations answered yes to this question (Table 28).

Table 28.
Percentage of producers who would consider retaining calves.

	By Operation Size		
All Ranches	$20-299$	$300-999$	$\geq 1,000$
	Bred Cows	Bred Cows	Bred Cows
$\mathrm{n}=708^{1}$	$\mathrm{n}=551$	$\mathrm{n}=146$	$\mathrm{n}=11$
$31 \%{ }^{2}$	30%	34%	45%
$(0.46)^{3}$	(0.46)	(0.47)	(0.52)

${ }^{1}$ Sample size. Excluding respondents who either answered "no" to question 13-Do you currently retain ownership?-dropped 106 respondents (59 from small, 43 from medium, and 4 from large operations).
${ }^{2}$ Mean (of binary variable reported as a percentage) of respondents reporting "yes" (rounded to the ${ }^{3}$ nearest whole percentile).
${ }^{3}$ Standard deviation.

For respondents who do not currently, but who would consider, retaining ownership of their calves, 63 percent reported they preferred a location in-state an average distance of 73 miles away and 35 percent preferred out-of-state facilities 134 miles from the home ranch. The maximum distance these 224 respondents reported that they would be willing to ship calves was 1,000 miles to an in-state and 2,000 miles to an out-of-state feedlot. Smaller producers who reported considering retained ownership were more likely to prefer in-state while larger producers were more likely to prefer out-of-state facilities (Table 29).

Table 29.

Preferred location of and distance to calves for producers who would consider retaining ownership into an off-farm feedlot.

Location	All Ranches$\mathrm{n}=224^{1}$	By Operation Size		
		20-299 Bred Cows $\mathrm{n}=167$	300-999 Bred Cows $\mathrm{n}=52$	$\geq 1,000$ Bred Cows $\mathrm{n}=5$
Percent Held In-State	$\begin{aligned} & 63 \%^{2} \\ & (0.48)^{3} \end{aligned}$	$\begin{aligned} & 67 \% \\ & \hline 67 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 52 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 40 \% \\ & (0.55) \end{aligned}$
Preferred Distance From Home: Average	$\underset{(129)^{3}}{73 \text { miles }^{4}}$	$\underset{(114)}{70 \text { miles }}$	$\underset{(173)}{88 \text { miles }}$	$\underset{(87)}{50 \text { miles }}$
Maximum	1,000 miles	1,000 miles	1,000 miles	200 miles
Percent Held Out-of-State	$\begin{aligned} & 35 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 31 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 46 \% \\ & (0.55) \end{aligned}$	$\begin{aligned} & 60 \% \\ & (0.55) \end{aligned}$
Preferred Distance From Home: Average	$\underset{(262)}{134 \text { miles }}$	$\underset{(265)}{118 \text { miles }}$	$\underset{(253)}{176 \text { miles }}$	$\underset{(228)}{220 \text { miles }}$
Maximum	2,000 miles	2,000 miles	1,000 miles	500 miles
${ }^{1}$ Sample size. Calculated from 224 res retaining ownership? ${ }^{2}$ Mean (of binary variable reported as whole percentile). ${ }^{3}$ Standard deviation. ${ }^{4}$ Mean distance (rounded to the neares	ondents who an percentage) of whole number)	ered "yes" to pondents repo	tion 15-Wo "yes" (roun	you consider o the nearest

Summary: Retained Ownership. Less than 10 percent of respondents to the Wyoming Beef Cattle Producers Survey reported currently retaining ownership of their calves in an off-farm feedlot. Larger producers were much more likely to retain ownership. Thirtyone (31) percent of those respondents who do not currently employ this practice said that they would consider doing so-again this percentage was much higher for larger operations. The preferred location and distance to calves for respondents who actually retained ownership and those who would consider this practice were very similar.

Alternative Practices

Respondents were asked about their current practices and opinions regarding direct marketing as well as several other alternative production, marketing, herd management, and income practices.

Respondents were asked to report the number of cattle they would direct market to consumers across state lines if a USDA inspector were available. The average number was 22 head for all ranches responding. There is a relationship between the number of head a producer would market directly and operation size with 13 head reported for
small, 24 for medium, and 360 for large operations. The large standard deviation for large operations is due to one producer reporting 3,500 head. The maximum number of head reported for medium and large producers was 500 and 600 head, respectively (Table 30).

Table 30.
Number of head a producer would direct market to consumers across state lines
if a USDA inspector were available.

	By Operation Size				
	$20-299$	$300-999$	$\geq 1,000$		
All Ranches	Bred Cows	Bred Cows	Bred Cows		
$\mathrm{n}=814^{1}$					$\mathrm{n}=610$
:---:					

${ }^{1}$ Sample size.
${ }^{2}$ Mean number of cattle (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Respondents were asked whether they have considered or are currently doing several alternative practices related to production, marketing, herd management, and income.
The most common specialty production practice respondents reported currently doing was grass-fed or natural beef (30 percent). Less than 10 percent of respondents currently produce USDA certified organic beef. About 30 percent of respondents said that they "have considered" producing either natural or organic beef (Table 31).

Fourteen (14) percent of respondents currently market beef directly to consumers. Only 4 percent belong to a beef co-operative or alliance. About 1 in 4 respondents said that they "have considered" these alternative marketing practices, 1 in 3 have not considered them, and about 1 in 7 said they "would not" market using these methods (Table 31).
Alternative herd management practices of employing a National Animal Identification System or changing calving seasons are currently done by 5 and 9 percent of respondents, respectively. Forty (40) percent said they would consider a national I.D. system and 27 percent said that they would consider a different calving season (Table 31).
When asked about alternative sources of ranch income, 14 percent of respondents reported currently adding an additional enterprise to their beef operations. Another 29 percent said that they would consider this option. About one quarter of respondents said they currently sell some form of recreation on their ranch for additional income, although nearly half said that they "will not" or have not considered selling recreation. Forty-four (44) percent said they currently work off-farm for additional income with the remainder evenly split between "have considered", "have not considered", and "will not" work offfarm (Table 31).

Table 31.
"Have you considered or are you currently doing any of the following practices?": all ranches.

Practice	Currently Doing	Have Considered	Have Not Considered	Will Not Do
	$\mathrm{n}=702^{1}$	$\mathrm{n}=702$	$\mathrm{n}=702$	$\mathrm{n}=702$
Production				
Organic Beef (USDA Certified)	$\begin{gathered} 6 \%^{2} \\ (0.23)^{3} \end{gathered}$	$\begin{aligned} & 31 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 32 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 18 \% \\ & (0.38) \end{aligned}$
Grass-fed or Natural Beef	$\begin{aligned} & 30 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 30 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 23 \% \\ & (0.42) \end{aligned}$	$\begin{aligned} & 10 \% \\ & (0.30) \end{aligned}$
Marketing				
Direct Customer Marketing	$\begin{aligned} & 14 \% \\ & (0.35) \end{aligned}$	$\begin{aligned} & 26 \% \\ & (0.44) \end{aligned}$	$\begin{aligned} & 31 \% \\ & (0.46 \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.35) \end{aligned}$
Join Beef Co-op or Alliance	$\begin{gathered} 4 \% \\ (0.20) \end{gathered}$	$\begin{aligned} & 29 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 36 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.35) \end{aligned}$
Herd Management				
National Ind. Animal ID System	$\begin{gathered} 5 \% \\ (0.22) \end{gathered}$	$\begin{aligned} & 40 \% \\ & (0.49) \end{aligned}$	$\begin{aligned} & 27 \% \\ & (0.44) \end{aligned}$	$\begin{aligned} & 13 \% \\ & (0.33) \end{aligned}$
Change Calving Season	$\begin{gathered} 9 \% \\ (0.28) \end{gathered}$	$\begin{aligned} & 27 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 25 \% \\ & (0.43) \end{aligned}$	$\begin{gathered} 26 \% \\ (0.44 \end{gathered}$
Income				
Start an Additional Enterprise	$\begin{aligned} & 14 \% \\ & (0.35) \end{aligned}$	$\begin{gathered} 29 \% \\ (0.5) \end{gathered}$	$\begin{aligned} & 24 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.37) \end{aligned}$
Sell Recreation	$\begin{aligned} & 24 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.40) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.40) \end{aligned}$	$\begin{aligned} & 23 \% \\ & (0.42) \end{aligned}$
Work Off-farm / ranch	$\begin{aligned} & 44 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.35) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.34) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.38) \end{aligned}$
Other	$\begin{aligned} & <1 \% \\ & (0.04) \end{aligned}$	$\begin{aligned} & <1 \% \\ & (0.07) \end{aligned}$	0	0

[^10]Four additional statements regarding sagebrush management were accidentally placed under question 18 on the survey instrument. These statements should have been coded using a likert scale indicating agreement. They are reported in Table 52 under Part C, Sagebrush Management.

Thirty-six (36) respondents listed one or more "other" practices under question 18. Responses to this opportunity to list miscellaneous ranch practices were diverse. Weed control was expressed as a concern in 19 responses and vermin control (e.g., control of prairie dogs, rabbits, and deer) in 5 others. Several respondents took this as an occasion to vent their opinions on endangered species, gas fields, off-farm employment, and sagebrush control. One respondent cryptically replied "flower". A complete list of individual responses is included in Appendix D.

Larger producers were more likely to currently be producing USDA certified organic beef, while a higher percent of smaller producers reported producing grass-fed or natural beef (Tables 32, 33, and 34).
Small and medium producers had similar opinions and practices related to alternative marketing with 14 percent currently marketing directly to consumers and 3 percent belonging to a beef co-operative or alliance. Large producers tended to be more active in both of these practices with 25 percent direct marketing and 17 percent members of a coop or alliance. Large producers were also more likely to be willing to do or consider these marketing practices (Tables 32, 33, and 34).

Large producers reported the highest involvement in implementing a National Animal Identification System (17 percent of large versus 4 and 5 percent of medium and small operations, respectively). No large producer reported currently calving in a different season and were the least likely to report willingness to do so (Tables 32, 33, and 34).
When asked about several alternative sources of ranch income, large operations were more likely to report currently having added an additional enterprise (42 percent of large versus 17 percent of medium and 13 percent of small operations). No large operator said that they "will not" add an enterprise and they were the most likely to report having considered one. Larger operations were also most likely to be selling recreation (42 percent of large, 38 percent of medium, and 19 percent of small operations). Not surprisingly, large operations were the least likely to report working off-farm or having considered working off-farm for additional income (Tables 32, 33, and 34).

Table 32.
"Have you considered or are you currently doing any of the following practices?": producers with 20 to 299 bred cows.

	Currently Doing $\mathrm{n}=522^{1}$	Have Considered $\mathrm{n}=522$	Have Not Considered $\mathrm{n}=522$	Will Not Do $\mathrm{n}=522$
Production				
Organic Beef (USDA Certified)	$\begin{gathered} 6 \%^{2} \\ (0.24)^{3} \end{gathered}$	$\begin{aligned} & 32 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 32 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.37) \end{aligned}$
Grass-fed or Natural Beef	$\begin{aligned} & 32 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 29 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 22 \% \\ & (0.42) \end{aligned}$	$\begin{gathered} 0 \% \\ (0.28) \end{gathered}$
Marketing				
Direct Customer Marketing	$\begin{aligned} & 14 \% \\ & (0.35) \end{aligned}$	$\begin{aligned} & 27 \% \\ & (0.44) \end{aligned}$	$\begin{aligned} & 30 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 13 \% \\ & (0.34) \end{aligned}$
Join Beef Co-op or Alliance	$\begin{gathered} 3 \% \\ (0.18) \end{gathered}$	$\begin{aligned} & 28 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 38 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.35) \end{aligned}$
Herd Management				
National Ind. Animal ID System	$\begin{gathered} 5 \% \\ (0.23) \end{gathered}$	$\begin{aligned} & 38 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 28 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 13 \% \\ & (0.33) \end{aligned}$
Change Calving Season	$\begin{gathered} 8 \% \\ (0.28) \end{gathered}$	$\begin{aligned} & 28 \% \\ & (0.45) \end{aligned}$	24\% (0.43)	$\begin{aligned} & 25 \% \\ & (0.44) \end{aligned}$
Income				
Start an Additional Enterprise	$\begin{aligned} & 13 \% \\ & (0.33) \end{aligned}$	$\begin{aligned} & 29 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 25 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.37) \end{aligned}$
Sell Recreation	$\begin{aligned} & 19 \% \\ & (0.39) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.40) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.40) \end{aligned}$	$\begin{gathered} 26 \% \\ (0.44) \end{gathered}$
Work Off-farm / ranch	$\begin{aligned} & 52 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.34) \end{aligned}$	$\begin{aligned} & 11 \% \\ & (0.31) \end{aligned}$	$\begin{aligned} & 13 \% \\ & (0.34) \end{aligned}$

[^11]Table 33.
"Have you considered or are you currently doing any of the following practices?": producers with $\mathbf{3 0 0}$ to 999 bred cows.

Practice	Currently Doing	Have Considered	Have Not Considered	Will Not Do
	$\mathrm{n}=168^{1}$	$\mathrm{n}=168$	$\mathrm{n}=168$	$\mathrm{n}=168$
Production				
Organic Beef (USDA Certified)	$\begin{aligned} & 4 \%^{2} \\ & (0.20)^{3} \end{aligned}$	$\begin{aligned} & 31 \% \\ & (0.46) \end{aligned}$	$\begin{aligned} & 35 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.40) \end{aligned}$
Grass-fed or Natural Beef	$\begin{aligned} & 24 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 32 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 24 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.34) \end{aligned}$
Marketing				
Direct Customer Marketing	$\begin{aligned} & 14 \% \\ & (0.34) \end{aligned}$	$\begin{aligned} & 24 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 33 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.37) \end{aligned}$
Join Beef Co-op or Alliance	$\begin{gathered} 5 \% \\ (0.23) \end{gathered}$	$\begin{aligned} & 35 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 33 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 16 \% \\ & (0.37) \end{aligned}$
Herd Management				
National Ind. Animal ID System	$\begin{gathered} 4 \% \\ (0.20) \end{gathered}$	$\begin{aligned} & 48 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 22 \% \\ & (0.42) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.34) \end{aligned}$
Change Calving Season	$\begin{aligned} & 11 \% \\ & (0.31) \end{aligned}$	$\begin{aligned} & 25 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 26 \% \\ & (0.44) \end{aligned}$	$\begin{aligned} & 26 \% \\ & (0.44) \end{aligned}$
Income				
Start an Additional Enterprise	$\begin{aligned} & 17 \% \\ & (0.38) \end{aligned}$	$\begin{aligned} & 29 \% \\ & (0.45) \end{aligned}$	$\begin{aligned} & 23 \% \\ & (0.42) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.38) \end{aligned}$
Sell Recreation	$\begin{aligned} & 38 \% \\ & (0.49) \end{aligned}$	$\begin{aligned} & 23 \% \\ & (0.42) \end{aligned}$	$\begin{aligned} & 18 \% \\ & (0.39) \end{aligned}$	$\begin{aligned} & 13 \% \\ & (0.34) \end{aligned}$
Work Off-farm / ranch	$\begin{aligned} & 22 \% \\ & (0.42) \end{aligned}$	$\begin{aligned} & 17 \% \\ & (0.37) \end{aligned}$	$\begin{aligned} & 22 \% \\ & (0.42) \end{aligned}$	$\begin{aligned} & 29 \% \\ & (0.45) \end{aligned}$

[^12]Table 34.
"Have you considered or are you currently doing any of the following practices?": producers with $\mathbf{1 , 0 0 0}$ or more bred cows.

	Currently Doing $\mathrm{n}=12^{1}$	Have Considered $\mathrm{n}=12$	Have Not Considered $\mathrm{n}=12$	Will Not Do
Practice	$17 \%^{2}$	25%	25%	$\mathrm{n}=12$
Production	$(0.39)^{3}$	(0.45)	(0.45)	25%
Organic Beef (USDA Certified)	17%	50%	25%	8%
Grass-fed or Natural Beef	(0.39)	(0.52)	(0.45)	(0.29)
Marketing				
Direct Customer Marketing	25%	33%	25%	8%
	(0.45)	(0.49)	(0.45)	(0.29)
Join Beef Co-op or Alliance	17%	25%	42%	8%
	(0.39)	(0.45)	(0.51)	(0.29)
Herd Management				
National Ind. Animal ID System	17%	42%	33%	0
Change Calving Season	(0.39)	(0.51)	(0.49)	-
	0	17%	42%	33%
Income	-	(0.39)	(0.51)	(0.49)
Start an Additional Enterprise	42%	33%		
Sell Recreation	(0.51)	(0.49)	(0.39)	0
Work Off-farm / ranch	58%	17%	8%	-
	(0.51)	(0.39)	(0.39)	(0.29)
	17%	17%	8%	42%
	(0.39)	(0.39)	(0.29)	(0.51)

[^13]Summary: Alternative Practices. One in seven producers responding to the Wyoming Beef Cattle Producers Survey reported that they currently market beef directly to consumers (this was consistent across all operation sizes). If a USDA inspector were available, respondents reported that they would market an average of 22 head (up to 320 head for large operations) directly to consumers across state lines. Grass-fed or natural beef production was popular, especially with smaller producers. About one third of respondents report having considered producing natural or organic beef-up to 50 percent of large operators report interest in natural beef production. Large operations
were also more likely to have adopted or considered a National Animal Identification System but were more conservative when asked about changing calving seasons.
Alternative enterprises and selling recreation were popular sources of income for larger operations while working off-farm was more often a source or potential source of income for small operations.

Future of the Beef Industry

Survey participants were asked to identify their level of agreement to thirteen statements regarding the future of the beef industry and their operations using a scale of strongly agree (1) to strongly disagree (5), 3 being an ambivalent response.
The statement, "A drought contingency plan in important for beef producers in Wyoming", received the highest level of agreement over all with a median response of 5 . This held true for all operation sizes: 5 was the median response for small operations, with 4 recorded for both medium and large operation sizes. The mode, or most typical response, for all ranches as well as for each operation size for this question was 5 (Table 35).

Other statements eliciting high levels of agreement included those regarding the impact of BSE ("mad cow" disease) and Brucellosis on the future of the beef industry (each received a median response of 4). Overall, respondents also agreed with statements regarding consumers' willingness to pay a price premium for organic, grass-fed, and origin-identified beef and the need to consider alternative enterprises to stay in business. (the median response for each of these statements was 4) (Table 35).

Overall, respondents were ambivalent towards the need for a mandated cattle ID System, the need to learn more about or receive assistance with: market alternatives; retained ownership, alliances, and forward pricing; alternative production practices and risk management strategies. The overall median response to all of these statements was 3 (Table 35).

A large portion of all respondents expressed disagreement with statements regarding the necessity of government restrictions on the use of antibiotics, growth implants, and vaccinations (the median response was 3 , however, the mode was 1 for this question indicating that responses were skewed towards "strongly disagree") (Table 35).

Small- and medium-sized producers agreed with statements regarding the future impact of BSE and Brucellosis. Large operations reported a higher level of agreement to a series of questions regarding the need to learn more about marketing alternatives, retained ownership, alliances, forward pricing, alternative production practices, and alternative risk management strategies. Also, large operations reported stronger agreement with statements about future reductions of government subsidies and federal grazing and were more likely to agree with the necessity of government restrictions on antibiotics, growth implants, and vaccinations (Table 35).

Table 35.

Level of agreement with statements regarding future changes in the beef industry.

Statement		By Operation Size		
	All Ranches	$20-299$ Bred Cows	$\begin{gathered} 300-999 \\ \text { Bred Cows } \end{gathered}$	$\geq 1,000$ Bred Cows
A mandated cattle ID system is needed.	$3.1(1.4)^{1}$	3.1 (1.4)	3.0 (1.4)	3.0 (1.5)
	3.0^{2}	3.0	3.0	3.0
	3^{3}	3	3	$1^{\text {a }}$
	$\mathrm{n}=780^{4}$	$\mathrm{n}=583$	$\mathrm{n}=182$	$\mathrm{n}=15$
Government restrictions on the use of antibiotics, growth implants, and vaccinations are necessary.	2.5 (1.3)	2.6 (1.3)	2.5 (1.3)	2.5 (1.5)
	3.0	3.0	2.0	2.0
	1	1	$1^{\text {a }}$	1
	$\mathrm{n}=789$	$\mathrm{n}=590$	$\mathrm{n}=184$	$\mathrm{n}=15$
Beef consumers are willing to pay a price premium for organic, grass fed, and origin-identified beef.	3.7 (1.1)	3.7 (1.2)	3.6 (1.1)	3.4 (1.4)
	4.0	4.0	4.0	4.0
	4	4	4	4
	$\mathrm{n}=785$	$\mathrm{n}=587$	$\mathrm{n}=183$	$\mathrm{n}=15$
A drought contingency plan is important for beef producers in Wyoming.	4.3 (1.0)	4.3 (1.0)	4.2 (1.1)	4.1 (1.0)
	5.0	5.0	4.0	4.0
	5	5	5	5
	$\mathrm{n}=783$	$\mathrm{n}=586$	$\mathrm{n}=182$	$\mathrm{n}=15$
BSE will have a big impact on the beef industry in the future.	3.8 (1.3)	3.8 (1.2)	3.6 (1.3)	2.4 (1.4)
	4.0	4.0	4.0	2.0
	5	5	5	2
	$\mathrm{n}=794$	$\mathrm{n}=596$	$\mathrm{n}=183$	$\mathrm{n}=15$
Brucellosis will have a big impact on the beef industry in the future.	3.8 (1.2)	3.8 (1.1)	3.6 (1.3)	3.2 (1.5)
	4.0	4.0	4.0	3.0
	5	5	5	5
	$\mathrm{n}=791$	$\mathrm{n}=593$	$\mathrm{n}=183$	$\mathrm{n}=15$
I need to consider alternative enterprises to stay in business.	3.4 (1.3)	3.5 (1.3)	3.0 (1.3)	3.9 (1.4)
	4.0	4.0	3.0	4.0
	4	4	3	5
	$\mathrm{n}=774$	$\mathrm{n}=576$	$\mathrm{n}=183$	$\mathrm{n}=15$
I need to learn more about marketing alternatives to stay in business.	3.3 (1.2)	3.3 (1.2)	3.2 (1.2)	3.5 (1.4)
	3.0	3.0	3.0	4.0
	3	3	3	$3^{\text {a }}$
	$\mathrm{n}=775$	$\mathrm{n}=578$	$\mathrm{n}=182$	$\mathrm{n}=15$

${ }^{1}$ Mean (rounded to the nearest tenth) along with its standard deviation in parentheses.
${ }^{2}$ Median.
${ }^{3}$ Mode or modes. ${ }^{\text {a }}$ Multiple modes-lowest is reported.
${ }^{4}$ Sample size. Responses of " 0 " were recoded as missing.
(Table 35 continues on next page).

Table 35- Continued.

Level of agreement with statements regarding future changes in the beef industry.

		By Operation Size		
Statement		$20-299$	$300-999$	$\geq 1,000$
All Ranches	Bred Cows	Bred Cows	Bred Cows	
I need assistance in approaching /	$3.0(1.2)$	$3.0(1.2)$	$2.9(1.3)$	$3.2(1.2)$
assessing alternative markets for my	3.0	3.0	3.0	3.0
cattle.	3	3	3	4
	$\mathrm{n}=776$	$\mathrm{n}=579$	$\mathrm{n}=182$	$\mathrm{n}=15$
I need to learn more about retained	$3.0(1.2)$	$3.0(1.2)$	$2.9(1.3)$	$3.4(1.5)$
ownership, alliances, and forward	3.0	3.0	3.0	4.0
pricing to become more competitive.	3	3	3	5
	$\mathrm{n}=757$	$\mathrm{n}=567$	$\mathrm{n}=175$	$\mathrm{n}=15$
I need to learn more about alternative				
production practices and alternative	$3.0(1.2)$	$3.0(1.1)$	$2.9(1.2)$	$3.3(1.2)$
risk management strategies for my	3.0	3.0	3.0	4.0
current enterprises to stay in	3	3	3	4
business.	$\mathrm{n}=754$	$\mathrm{n}=565$	$\mathrm{n}=174$	$\mathrm{n}=15$
Government subsidies to	$3.4(1.2)$	$3.4(1.2)$	$3.2(1.3)$	$3.8(1.3)$
ranchers/farmers will be reduced or	3.0	3.0	3.0	4.0
eliminated in the future.	4	4	4	5
	$\mathrm{n}=764$	$\mathrm{n}=572$	$\mathrm{n}=177$	$\mathrm{n}=15$
Livestock grazing on federal land	$3.2(1.3)$	$3.3(1.3)$	$3.1(1.3)$	$3.3(1.8)$
will be reduced in the future.	3.0	3.0	3.0	4.0
	4	4	3	1^{a}
	$\mathrm{n}=768$	$\mathrm{n}=573$	$\mathrm{n}=180$	$\mathrm{n}=15$

[^14]
Part C: Drought and Sagebrush Management

The third part of the Wyoming Beef Cattle Producers Survey focused on specific drought and sagebrush management strategies and practices.

Drought Management

A series of questions regarding drought within the period of 2000 to 2004 asked respondents to detail impacts and changes they experienced as a result of recent drought as well as herd management, business, income, and tax strategies they employed to deal with the drought.

Respondents to the survey reported that they had been negatively impacted by the most recent drought an average of 4.8 consecutive years. The length of negative impacts did not vary much by operation size (Table 36).

Table 36.
Consecutive years negatively impacted by the most recent drought.

	By Operation Size		
	$20-299$	$300-999$	$\geq 1,000$
All Ranches	Bred Cows	Bred Cows	Bred Cows
$\mathrm{n}=814^{1}$	$\mathrm{n}=610$	$\mathrm{n}=189$	$\mathrm{n}=15$
4.8^{2}	4.7	4.9	4.9
$(2.1)^{3}$	(2.0)	(2.3)	(1.9)

${ }^{1}$ Sample size.
${ }^{2}$ Mean consecutive years (rounded to the nearest tenth).
${ }^{3}$ Standard deviation (rounded to the nearest tenth).

Relatively low standard deviations in Table 36 indicate that the length of drought impacts was fairly consistent for all respondents. The frequency graph shown in Figure 1 reinforces this finding: responses range from 0 to 10 years with a mode response of 5 years. Sixty-nine (69) percent of respondents report that negative drought impacts lasted 4 to 6 years.

Figure 1.
Consecutive years negatively impacted by the most recent drought.

Respondents were asked to quantify changes experienced each year from 2000 through 2004 as a result of drought compared to a normal year. Mean percentages suggest that the severity of impact increased over time. For all respondents, grazing capacity reduction, irrigation water reduction, and winter feed reduction had increasing impacts for the first three years of drought which tapered off to a slower rate of increase in subsequent years. Respondents reported increasing changes in average sale weight reduction between 2000 and 2002 which began to decline by 2004. Rates of change for reduction in percent weaned and owner equity each increased between 2000 and 2002. This rate remained constant between 2002 and 2004. Standard deviations indicate a wide variation in responses (Table 37).

Table 37.
Changes experienced as a percentage compared to a normal year as a result of recent drought: all ranches.

	Year				
Changes Experienced	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$ $\mathrm{n}=759^{1}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Grazing capacity reduction	$16 \%^{2}$	20%	28%	28%	31%
	$(23)^{3}$	(23)	(26)	(25)	(28)
Irrigation water reduction	12%	15%	21%	21%	22%
Winter feed production reduction	18%	21%	30%	28%	35%
	(27)	(27)	(31)	(31)	(36)
Average sale weight reduction	4%	5%	7%	7%	6%
	(14)	(13)	(15)	(16)	(15)
Percent weaned reduction	4%	5%	6%	6%	6%
	(15)	(16)	(17)	(17)	(17)
Owner equity reduction	4%	5%	7%	7%	7%
	(13)	(14)	(17)	(17)	(18)
Other	$<1 \%$	$<1 \%$	1%	1%	1%
	(2)	(3)	(5)	(5)	(7)

${ }^{\top}$ Sample size. Excluding respondents who answered " 0 " to question 20 dropped 55 respondents.
${ }^{2}$ Mean percentages (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation (rounded to the nearest whole percent).

Thirty-nine (39) respondents listed "other" changes they experienced each year as a result of recent drought. Twelve (12) of these comments were related to pasture and land management issues. Respondents indicated problems with grasshoppers, weeds, inability to plow hay fields, need to reseed grass killed by drought, and heat stressed plants. Several indicated that they had been unable to put hay up and had increased grazing costs. Changes in herd management accounted for 8 responses: reduction of cows, earlier calving, problems with pregnancy and calving rates, and increased feeding were listed. Five (5) responses dealt with the need to haul or develop water for stock. Two (2) respondents listed positive changes related to the drought (program giving higher prices for calves and increased production). A complete list of individual responses for the "other" category are included in Appendix D.
Tables 38,39 , and 40 report changes experienced as a result of drought as a percentage compared to a normal year by operation size for small, medium, and large operations.

Table 38.
Changes experienced as a percentage compared to a normal year as a result of recent drought: producers with 20 to 299 bred cows.

	Year				
Changes Experienced	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$ $\mathrm{n}=569^{1}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Grazing capacity reduction	$17 \%^{2}$	20%	28%	28%	32%
	$(24)^{3}$	(24)	(26)	(26)	(28)
Irrigation water reduction	12%	14%	20%	20%	21%
	(24)	(24)	(29)	(29)	(31)
Winter feed production reduction	18%	21%	29%	28%	34%
	(27)	(27)	(31)	(31)	(36)
Average sale weight reduction	4%	5%	6%	6%	6%
	(13)	(13)	(14)	(15)	(15)
Percent weaned reduction	5%	6%	6%	6%	6%
	(15)	(17)	(16)	(16)	(17)
Owner equity reduction	4%	4%	6%	6%	7%
	(12)	(14)	(16)	(16)	(17)

${ }^{1}$ Sample size. Excluding respondents who answered " 0 " to question 20 dropped 55 respondents: 41 of these were from small operations.
${ }^{2}$ Mean percentages (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation.
Table 39.
Changes experienced as a percentage compared to a normal year as a result of recent drought: producers with 300 to 999 bred cows.

	Year				
	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Changes Experienced			$\mathrm{n}=176^{1}$		
Grazing capacity reduction	$14 \%^{2}$	20%	29%	28%	31%
	$(12)^{3}$	(21)	(25)	(23)	(27)
Irrigation water reduction	12%	15%	23%	22%	24%
	(23)	(25)	(30)	(30)	(32)
Winter feed production reduction	19%	21%	32%	29%	36%
	(26)	(26)	(32)	(31)	$(36$.
Average sale weight reduction	5%	6%	9%	8%	8%
	(15)	(15)	(18)	(19)	(18)
Percent weaned reduction	4%	4%	7%	7%	7%
	(15)	(16)	(20)	(18)	(19)
Owner equity reduction	4%	5%	9%	7%	9%
	(15)	(15)	(19)	(18)	(20)

[^15]Table 40.
Changes experienced as a percentage compared to a normal year as a result of recent drought: producers with $\mathbf{1 , 0 0 0}$ or more bred cows.

Changes Experienced	Year				
	2000	2001	2002	2003	2004
	$\mathrm{n}=14^{1}$				
Grazing capacity reduction	$\begin{gathered} 15 \%^{2} \\ (20)^{3} \end{gathered}$	$\begin{gathered} 21 \% \\ (18) \end{gathered}$	$\begin{gathered} \hline 23 \% \\ (21) \end{gathered}$	$\begin{gathered} 23 \% \\ (20) \end{gathered}$	$\begin{gathered} 23 \% \\ (19) \end{gathered}$
Irrigation water reduction	$\underset{(29)}{21 \%}$	$\underset{(39)}{42 \%}$	$\underset{(31)}{44 \%}$	$\underset{(28)}{40 \%}$	$\underset{(32)}{36 \%}$
Winter feed production reduction	$\begin{gathered} 18 \% \\ (17) \end{gathered}$	$\underset{(33)}{32 \%}$	$\begin{gathered} 36 \% \\ (30) \end{gathered}$	$\underset{(28)}{33 \%}$	$\begin{gathered} 34 \% \\ (30) \end{gathered}$
Average sale weight reduction	$\begin{gathered} 3 \% \\ (7) \end{gathered}$	$\underset{(10)}{5 \%}$	$\begin{gathered} 9 \% \\ (13) \end{gathered}$	$\underset{(8)}{6 \%}$	$\underset{(8)}{4 \%}$
Percent weaned reduction	$\begin{gathered} 3 \% \\ (5) \end{gathered}$	$\begin{gathered} 3 \% \\ (5) \end{gathered}$	$\underset{(12)}{8 \%}$	$\begin{gathered} 5 \% \\ (9) \end{gathered}$	$\begin{gathered} 3 \% \\ (5) \end{gathered}$
Owner equity reduction	$\begin{aligned} & 4 \% \\ & (11) \end{aligned}$	$\begin{gathered} 5 \% \\ (12) \end{gathered}$	$\begin{gathered} 6 \% \\ (15) \end{gathered}$	$\begin{gathered} 9 \% \\ (15) \\ \\ \hline \end{gathered}$	$\underset{(8)}{5 \%}$

${ }^{1}$ Sample size. Excluding respondents who answered " 0 " to question 20 dropped 55 respondents, 1 of these was a large operation.
${ }^{2}$ Mean percentages (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation.

Multiple strategies employed by respondents throughout the recent drought were enumerated for each year from 2000 through 2004. Respondents were asked about specific herd management strategies, additional sources of income, and new business enterprises. The three most frequently checked management strategies across years were purchasing additional winter feed, partial herd reduction, and participating in a government feed assistance program. The least common response was total herd liquidation. A low response for this strategy could be due to producers in the sample not participating if they no longer had cattle when they received the survey (Table 41).

Table 41.
Strategies used each year to deal with recent drought: all ranches.

Strategies Used	Year				
	2000	2001	$\begin{gathered} 2002 \\ \mathrm{n}=759^{1} \end{gathered}$	2003	2004
Partial Herd Liquidation	$\begin{gathered} 28 \%{ }^{2} \\ (0.5)^{3} \end{gathered}$	$\begin{gathered} 35 \% \\ (0.5) \end{gathered}$	$\begin{gathered} \hline 50 \% \\ (0.5) \end{gathered}$	$\begin{gathered} \hline 45 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 44 \% \\ (0.5) \end{gathered}$
Total Herd Liquidation	$\begin{aligned} & 1 \% \\ & (0.1) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (0.1) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (0.1) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (0.1) \end{aligned}$	$\begin{aligned} & 3 \% \\ & (0.2) \end{aligned}$
Selling Retained Yearlings	$\begin{aligned} & 6 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 8 \% \\ & (0.3) \end{aligned}$	$\begin{gathered} 12 \% \\ (0.3) \end{gathered}$	$\begin{gathered} 12 \% \\ (0.3) \end{gathered}$	$\begin{gathered} 13 \% \\ (0.3) \end{gathered}$
Lease / Purchase Additional Grazing	$\begin{gathered} 16 \% \\ (0.4) \end{gathered}$	$\begin{gathered} 21 \% \\ (0.4) \end{gathered}$	$\begin{gathered} 29 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 31 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 33 \% \\ (0.5) \end{gathered}$
Purchase Additional Winter Feed	$\begin{gathered} 35 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 44 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 59 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 56 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 59 \% \\ (0.5) \end{gathered}$
Early Weaning of Calves to Reduce	$\begin{gathered} 11 \% \\ (0.3) \end{gathered}$	$\begin{gathered} 15 \% \\ (0.4) \end{gathered}$	$\begin{gathered} 29 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 31 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 34 \% \\ (0.5) \end{gathered}$
Participated in Government Feed	$\begin{gathered} 15 \% \\ (0.4) \end{gathered}$	$\begin{gathered} 23 \% \\ (0.4) \end{gathered}$	$\begin{gathered} 52 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 55 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 42 \% \\ (0.5) \end{gathered}$
Participated in Government Income	$\begin{aligned} & 4 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 6 \% \\ & (0.2) \end{aligned}$	$\begin{gathered} 10 \% \\ (0.3) \end{gathered}$	$\begin{gathered} 11 \% \\ (0.3) \end{gathered}$	$\begin{gathered} 10 \% \\ (0.3) \end{gathered}$
Earn Off-Farm Income	$\begin{gathered} 36 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 40 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 42 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 44 \% \\ (0.5) \end{gathered}$	$\begin{gathered} 44 \% \\ (0.5) \end{gathered}$
Added Alternative Livestock	$\begin{aligned} & 3 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 3 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 4 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 6 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 7 \% \\ & (0.3) \end{aligned}$
Added Alternative Crop Enterprise	$\begin{aligned} & 1 \% \\ & (0.1) \end{aligned}$	$\begin{aligned} & 1 \% \\ & (0.1) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (0.1) \end{aligned}$	$\begin{aligned} & 2 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 3 \% \\ & (0.2) \end{aligned}$
Other	$\begin{aligned} & 2 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 3 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 4 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 4 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 4 \% \\ & (0.2) \end{aligned}$

[^16]There were 86 individual responses listing one or more "other" strategies used to deal with recent drought. Twenty-three (23) listed changes in grazing, pasture, or other feed sources. Twenty-one (21) responses specified herd reductions (e.g., culling cows or not keeping replacement heifers. Fifteen (15) herd management strategies were listed including pasture rotation, moving herds off of pasture early, and not backgrounding calves. Nine (9) respondents reported hauling water or changing irrigation practices in response to water availability. There were 12 responses listing increasing income from additional ranch and off-ranch sources. Five (5) comments indicated that respondents had
not experienced any drought-related impacts. In one instance "Jack Daniels" was used as a coping strategy. A complete list of individual responses is included in Appendix D.

A much higher percentage of respondents in small and medium operation size categories indicated earning off-farm income as a strategy to mitigate drought impacts. Large operations were much more likely to add alternative crop or livestock enterprises. Medium-sized operations were more likely to indicate selling retained yearlings as a strategy. Medium- and large-size operations were more likely to lease or purchase additional grazing as the length of the drought increased. No large operations reported using total herd liquidation (Tables 42, 43, and 44).

Table 42.
Strategies used each year to deal with recent drought: producers with 20 to 299 bred cows.

	Year				
	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Strategies Used	$27 \%^{2}$	33%	48%	43%	43%
Partial Herd Liquidation	$(0.5)^{3}$	(0.5)	(0.5)	(0.5)	(0.5)
Total Herd Liquidation	1%	2%	2%	2%	2%
	(0.1)	(0.1)	(0.1)	(0.1)	(0.2)
Selling Retained Yearlings	5%	7%	9%	10%	10%
	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)
Lease / Purchase Additional Grazing	15%	20%	27%	29%	32%
	(0.4)	(0.4)	(0.5)	(0.5)	(0.5)
Purchase Additional Winter Feed	34%	41%	56%	54%	57%
	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)
Early Weaning of Calves to Reduce	11%	14%	26%	30%	33%
	(0.3)	(0.4)	(0.4)	(0.5)	(0.5)
	14%	21%	49%	52%	39%
Participated in Government Feed	(0.3)	(0.4)	(0.5)	(0.5)	(0.5)
	4%	6%	10%	11%	9%
Participated in Government Income	(0.2)	(0.2)	(0.3)	(0.3)	(0.3)
	41%	45%	47%	49%	49%
Earn Off-Farm Income	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)
	4%	4%	4%	6%	7%
Added Alternative Livestock	(0.2)	(0.2)	(0.2)	(0.2)	(0.3)
	1%	1%	2%	2%	3%
Added Alternative Crop Enterprise	(0.1)	(0.1)	(0.1)	(0.1)	(0.2)

[^17]Table 43.
Strategies used each year to deal with recent drought: producers with 300-999 bred cows.

	Year				
Strategies Used	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Partial Herd Liquidation	300^{2}	42%	57%	51%	49%
	$(0.5)^{3}$	(0.5)	(0.5)	(0.5)	(0.5)
Total Herd Liquidation	2%	3%	3%	2%	5%
	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)
Selling Retained Yearlings	6%	10%	18%	15%	19%
	(0.2)	(0.3)	(0.4)	(0.4)	(0.4)
Lease / Purchase Additional Grazing	19%	24%	32%	37%	36%
	(0.4)	(0.4)	(0.5)	(0.5)	(0.5)
Purchase Additional Winter Feed	39%	51%	66%	64%	64%
	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)
Early Weaning of Calves to Reduce	11%	18%	35%	36%	36%
	(0.3)	(0.4)	(0.5)	(0.5)	(0.5)
Participated in Government Feed	20%	30%	63%	64%	52%
	(0.4)	(0.5)	(0.5)	(0.5)	(0.5)
Participated in Government Income	4%	7%	13%	13%	13%
	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)
Earn Off-Farm Income	22%	24%	28%	31%	32%
	(0.4)	(0.4)	(0.5)	(0.5)	(0.5)
Added Alternative Livestock	1%	1%	3%	4%	5%
	(0.1)	(0.1)	(0.2)	(0.2)	(0.2)
Added Alternative Crop Enterprise	1%	1%	2%	2%	5%
	(0.1)	(0.1)	(0.1)	(0.2)	(0.2)

${ }^{1}$ Sample size. Excluding respondents who answered " 0 " to question 20 dropped 55 respondents. 13 of these were from medium operations.
${ }^{2}$ Mean of a binary variable is reported as a percentage (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation.

Table 44.
Strategies used each year to deal with recent drought: producers with $\mathbf{1 , 0 0 0}$ or more bred cows.

${ }^{1}$ Sample size. Excluding respondents who answered " 0 " to question 20 dropped 55 respondents. 1 of these was from large operations.
${ }^{2}$ Mean of a binary variable is reported as a percentage (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation.

Of 593 respondents who reported liquidating part or all of their beef cattle herd in response to recent drought, 27 percent said that they used income averaging to reduce income tax liability associated with increased income from liquidation sale with the hope of replacements being purchased within twenty-four months. Medium-sized operators were the most likely to use income averaging (38 percent) followed by small and large operators (Table 45).

Table 45.

Producers reporting using income averaging to reduce tax liability.

	By Operation Size		
	$20-299$	$300-999$	$\geq 1,000$
All Ranches	Bred Cows	Bred Cows	Bred Cows
$\mathrm{n}=593^{1}$	$\mathrm{n}=439$	$\mathrm{n}=144$	$\mathrm{n}=15$
$27 \%^{2}$	24%	38%	20%
$(0.5)^{3}$	(0.4)	(0.5)	(0.4)

${ }^{1}$ Sample size. Excluding respondents who did not respond or who gave a nonsensical answer to this question dropped 221 respondents. 171 of these were from small and 45 from medium operations.
${ }^{2}$ Mean of as a percentage of respondents reporting "yes" (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation.

Of producers who used income averaging to mitigate tax liability 11 percent reported replacing their herd with purchased breeding stock to pre-drought levels. Larger operations were much more likely to have purchased cattle to repopulate their herds (Table 46).

Table 46.

Producers reporting replacing liquidated herds to pre-drought levels.

	By Operation Size		
	$20-299$	$300-999$	$\geq 1,000$
All Ranches	Bred Cows	Bred Cows	Bred Cows
$\mathrm{n}=571^{1}$	$\mathrm{n}=418$	$\mathrm{n}=144$	$\mathrm{n}=9$
$11 \%{ }^{2}$	9%	13%	33%
$(0.3)^{3}$	(0.3)	(0.3)	(0.5)
${ }^{1}$ Sample			

${ }^{\mathrm{T}}$ Sample size. Excluding respondents who did not give an affirmative answer to question 23-Did you use income averaging? - and who did not respond or who gave a nonsensical answer to this question dropped 243 respondents. 192 of these were from small, 45 from medium, and 6 from large operations. ${ }^{2}$ Mean of as a percentage of respondents reporting "yes" (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation.

Respondents who reported using income averaging and repopulating their herds to predrought levels with purchased cattle were asked to specify the type of breeding stock they purchased. Of 56 responses the most common type of cattle purchased were bred cows (44 percent) followed by bred heifers (23 percent), and heifers and mature cows (19 and 14 percent, respectively) (Table 47).

Table 47.

Breeding stock type for producers replacing liquidated herds to pre-drought levels.

		By Operation Size		
		$20-299$ Type of Breeding Stock	$300-999$ All Ranches $\mathrm{n}=56^{1}$	$\geq 1,000$ Bred Cows $\mathrm{n}=34$
Heifers Cows	$\mathrm{n}=18$	Bred Cows $\mathrm{n}=4$		
Bred Heifers	190^{2}	16%	20%	35%
	$(37)^{3}$	(35)	(39)	(47)
Mature Cows	23%	23%	27%	13%
	(38)	(38)	(42)	(25)
Bred Cows	14%	21	0	15%
	(33)	(39)	-	(30)
	44%	40	53	38%
	(46)	(46)	(47)	(48)

${ }^{1}$ Sample size. Excluding respondents answered "no" to question 24 - did replace a liquidated herd, as well as answers that did not sum to 100% dropped 758 respondents. 576 of these were from small, 171 from medium, and 11 from large operations.
${ }^{2}$ Mean percentage (rounded to the nearest whole percent).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Summary: Drought Management. Respondents reported negative impacts from recent drought lasting an average of 5 years. Although there was a wide variation in responses, overall the severity of impacts increased over time. The largest changes reported were reductions in winter feed production, grazing capacity, and irrigation water. Respondents reported employing multiple strategies over the duration of the drought to mitigate its impacts, most commonly purchasing additional winter feed, partial herd reduction, and participation in government feed assistance programs. The number of strategies employed increased over time. A higher percentage of smaller operations relied on increased off-farm income to survive the drought while larger operations were more likely to purchase additional grazing as the length of the drought increased.

Sagebrush Management

A series of three questions asked respondents about the abundance of sagebrush on their private and public ranch lands as well as management techniques they use to control it.
Despite a high variability in responses (indicated by high standard deviations reflecting answers ranging from 0 to 400,000 acres), respondents reported somewhat less abundant sagebrush cover on private than public ranch lands. The mean acreage for every category of cover increased with operation size (Table 48). Maximum acres reported for each coverage category are reported in Appendix C.

Table 48.

Number of acres with following abundance of sagebrush.

Land Tenure	All Ranches				
	None	Light	Moderate $\mathrm{n}=698^{1}$	Abundant	Heavy
Private	$\underset{(8,298)^{3}}{1,450 \text { acres }^{2}}$	$\begin{gathered} 1,062 \text { acres } \\ (5,518) \end{gathered}$	$\underset{(6,435)}{1,578 \text { acres }}$	$\begin{gathered} \hline 450 \text { acres } \\ (2,022) \end{gathered}$	$\begin{gathered} 299 \text { acres } \\ (2,229) \end{gathered}$
Public	$\underset{(3,431)}{291 \text { acres }}$	$\begin{gathered} 794 \text { acres } \\ (9,732) \end{gathered}$	$\underset{(15,577)}{1,270 \text { acres }}$	$\underset{(12,334)}{1,093 \text { acres }}$	$\underset{(6,691)}{673 \text { acres }}$

Producers with 20 to 299 Bred Cows

Land Tenure	None	Light	Moderate $\mathrm{n}=521$	Abundant	Heavy
Private	621 acres $(1,866)^{3}$	$\begin{gathered} 424 \text { acres } \\ (1,819) \end{gathered}$	$\begin{gathered} \hline 753 \text { acres } \\ (2,410) \end{gathered}$	208 acres (817)	84 acres (456)
Public	$\begin{gathered} 237 \text { acres } \\ (3,657) \end{gathered}$	$422 \text { acres }$ $(4,792)$	$\underset{(2,867)}{356} \text { acres }$	$\underset{(2,854)}{269 \text { acres }}$	321 acres $(4,527)$

Producers with 300 to 999 Bred Cows

Land Tenure	None	Light	Moderate $\mathrm{n}=162$	Abundant	Heavy
Private	$\begin{aligned} & 3,015 \text { acres } \\ & (10,023)^{3} \end{aligned}$	$\begin{gathered} 1,757 \text { acres } \\ \hline(4,285) \end{gathered}$	$\begin{array}{\|c} 3,013 \text { acres } \\ (7,570) \end{array}$	$\underset{(3,781)}{1,128 \text { acres }}$	$\begin{gathered} 979 \text { acres } \\ (4,480) \end{gathered}$
Public	$\underset{(2,779)}{490 \text { acres }}$	$622 \text { acres }$ $(2,997)$	$\underset{(31,789)}{4,136 \text { acres }}$	$\underset{(24,464)}{3,240 \text { acres }}$	$\underset{(11,215)}{1,855 \text { acres }}$

Producers with 1,000 or more Bred Cows

Land Tenure	None	Light	Moderate $\mathrm{n}=15$	Abundant	Heavy
Private	$\underset{(4,, 024)^{3}}{13,333 \text { acres }}$	$\begin{gathered} 15,692 \text { acres } \\ (30,528) \end{gathered}$	$\underset{(30,844)}{14,763 \text { acres }}$	$\underset{(2,364)}{1,549 \text { acres }}$	$\begin{gathered} 420 \text { acres } \\ (1,294) \end{gathered}$
Public	0	$\underset{(59,331)}{15,555 \text { acres }}$	$\underset{(5,257)}{2,067 \text { acres }}$	$\begin{gathered} \text { 6,533 acres } \\ (16,677) \end{gathered}$	133 acres (516)

[^18]Although all respondents were slightly more likely to report using herbicide to control sagebrush on their ranches, no single method for control stands out as the most common. Larger operations were slightly more likely to report using burning for sagebrush control. Also, medium and large operations were more likely to report using some method for control (Table 49).

Table 49.
Methods used to control sagebrush.

		By Operation Size		
		$20-299$	$300-999$	$\geq 1,000$
Method	All Ranches	Bred Cows	Bred Cows	Bred Cows
Burning	$\mathrm{n}=698^{1}$	11%	31%	$\mathrm{n}=15$
	$16 \%^{2}$	(0.32)	(0.46)	33%
Herbicide	$(0.37)^{3}$	15%	35%	(0.49)
	19%	(0.35)	(0.48)	27%
Other	(0.40)	12%	14%	(0.46)
	12%	(0.32)	(0.34)	13%
	(0.33)	$0.35)$		

${ }^{1}$ Sample size. Excluding respondents who did not answer any part of questions $26-28$ dropped 117 respondents, 87 of these were from small and 27 from medium operations.
${ }^{2}$ Mean of binary variable reported as a percentage.
${ }^{3}$ Standard deviation.

There were 156 responses listing one or more "other" methods used to control sagebrush. The majority of these (79) listed mechanical removal methods such as a brush hogging, dragging, mowing, grading, digging, tilling, or chopping sagebrush. Twenty-seven (27) others reported management methods incorporating some type of grazing. Six (6) respondents listed flood irrigation. Thirty-seven responded that they either do not control or have no sagebrush on their land. A complete list of individual responses is included in Appendix D.

Respondents who reported using burning as a method to control sagebrush typically repopulated burned areas with cattle one or two months after burning. Larger operations tended to wait longer-generally, four to six months. There was very little difference over land tenure in the time before cattle were returned to burned areas (Table 50).

Table 50.
"How long do you wait before putting cattle back on land burned for sagebrush control?"

All Ranches$\mathrm{n}=698$		Operation Size					
		20-299 Bred Cows$\mathrm{n}=521$		$\begin{gathered} 300-999 \\ \text { Bred Cows } \\ \mathrm{n}=162 \end{gathered}$		$\begin{gathered} \geq 1,000 \\ \text { Bred Cows } \\ \mathrm{n}=15 \end{gathered}$	
Private Lands	Public Lands	Private Lands	Public Lands	Private Lands	Public Lands	Private Lands	Public Lands
0.2 years (0.8)	0.1 years (0.6)	0.1 years (0.4)	0.1 years (0.4)	$\begin{gathered} 0.5 \text { years } \\ (1.5) \end{gathered}$	$\begin{gathered} 0.3 \text { years } \\ (1.0) \end{gathered}$	$\begin{gathered} 0.3 \text { years } \\ (0.8) \end{gathered}$	0.3 years (0.8)

${ }^{1}$ Sample size. Excluding respondents who did not answer any part of questions $26-28$ dropped 117 respondents, 87 of these were from small and 27 from medium operations.
${ }^{2}$ Mean years (rounded to the nearest tenth).
${ }^{3}$ Standard deviation (rounded to the nearest tenth).

Typical sagebrush control burn sizes for all ranches were approximately 30 acres on both private and public land. Small operations typically burned 7 acres of private and 3 acres on public lands, medium operations burned 94 private and 109 public acres, and large operations reported typical burns of 87 acres on private and 114 acres on public lands (Table 51).

Table 51.
"What is the typical size of your burn?"

All Ranches		Operation Size					
		$20-299$ Bred Cows		$\begin{gathered} 300-999 \\ \text { Bred Cows } \end{gathered}$		$\geq 1,000$ Bred Cows	
$\mathrm{n}=698$		$\mathrm{n}=521$		$\mathrm{n}=162$		$\mathrm{n}=15$	
Private Lands	Public Lands	Private Lands	Public Lands	Private Lands	Public Lands	Private Lands	Public Lands
29 acres (173)	30 acres (398)	7 acres (45)	3 acres (30)	94 acres (332)	$\begin{gathered} 109 \text { acres } \\ (812) \\ \hline \end{gathered}$	87 acres (264)	114 acres (387)

${ }^{1}$ Sample size. Excluding respondents who did not answer any part of questions $26-28$ dropped 117 respondents, 87 of these were from small and 27 from medium operations.
${ }^{2}$ Mean acres (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Responses indicating agreement or disagreement with four statements regarding reduction of forage yields on private and public ranch land due to sagebrush cover, possible habitat destruction due to sagebrush control and the effect of cheat grass on sagebrush management mistakenly included in question 18 of the survey are reported in Table 52. Data were not sorted by operation size and include only telephone survey data.

Table 52.
"Have you considered or are you currently doing any of the following practices?": all ranches.

		Strongly Agree (1)	(2)	(3)	(4)	Strongly Disagree (5)
Statement	n missing	$\mathrm{n}=324^{1}$	$\mathrm{n}=324$ $\mathrm{n}=324$	$\mathrm{n}=324$		
Sagebrush cover reduces forage yields on the privately-owned lands that you ranch.	109	18%	7%	18%	28%	29%
Sagebrush cover reduces forage yields on the pubic lands that you ranch.	126	18%	7%	24%	24%	18%
Endangered wildlife and possible						
habitat destruction are a concern for you in controlling sagebrush on your ranch.	110	32%	18%	24%	14%	12%
The presence of cheat grass affects	117	32%	21%	27%	12%	9%

${ }^{1}$ Sample size. Limiting responses to phone survey results in an overall sample size of 324 .
${ }^{2}$ Mean of binary variable reported as a percentage (rounded to the nearest whole percentile).
${ }^{3}$ Standard deviation.

Part D: Demographic Information

The final portion of the Wyoming Beef Cattle Producers Survey collected information describing ranch location, ranch income, and basic demographic information on the primary operator.

Respondents were asked to list their mailing ZIP code. Figure 2 indicates the frequency of responses by ZIP Code. Southwest Fremont county and Platte county had the highest frequency of responses. Generally, southwestern Wyoming had fewer responses.

Figure 2.

Frequency of responses by ZIP code.

Respondents were also asked to report the elevation of their ranch. The state of Wyoming ranges in elevation range from 2,953 to 13,000 feet above sea level. The average elevation of a ranch represented by the Wyoming Beef Cattle Producers Survey was $5,366 \mathrm{ft}$. Larger operations tended to be located at slightly higher elevations (Table 53).

Table 53.

Ranch elevation.

	By Operation Size		
	$20-299$	$300-999$	$\geq 1,000$
All Ranches	Bred Cows	Bred Cows	Bred Cows
$\mathrm{n}=770^{1}$	$\mathrm{n}=572$	$\mathrm{n}=183$	$\mathrm{n}=15$
$5,366 \mathrm{ft}^{2}$	$5,268 \mathrm{ft}$	$5,610 \mathrm{ft}$	$6,113 \mathrm{ft}$
$(1,216)^{3}$	$(1,164)$	$(1,326)$	$(1,158)$

${ }^{1}$ Sample size. Limiting answers to a range of 2,000 to $13,000 \mathrm{ft}$ above sea level dropped 44 responses. 38 of these were from small and 6 from medium operations.
${ }^{2}$ Mean feet above sea level.
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Eighty-eight (88) percent of respondents to the Wyoming Beef Cattle Producers Survey were male and 11 percent were women. Currently in the population women operators are 11.2 percent of all principal operators and 27.2 percent of all farm operators (NASS 2002). There was little difference over the gender of the primary operator by operation size (Table 54).

Table 54.
Gender of primary operator.

	By Operation Size			
	All Ranches	$20-299$	$300-999$	$\geq 1,000$
Gender	$\mathrm{n}=814^{1}$	Bred Cows	Bred Cows	Bred Cows
Male	$88 \%^{2}$	87%	89%	87%
	$(0.33)^{3}$	(0.34)	(0.31)	(0.35)
Female	11%	11%	10%	13%
	(0.31)	(0.32)	(0.29)	(0.35)

${ }^{1}$ Sample size.
${ }^{2}$ Mean of binary variable reported as a percentage.
${ }^{3}$ Standard deviation.

Primary operator ages for respondents was diverse with every age category 35 years or over represented by at least 10 percent of respondents. Half of the primary operators were between the ages of 45 and 59 years. There is no clear relationship between age and operation size (Table 55). The national average for all principal farm operators is 55.3 years and has increased in every census since 1978 (NASS 2002 Census of Agriculture). Regionally, this age ranges from 55.4 years in Montana to 53.3 years of age in South Dakota.

Table 55.

Age of primary operator.

${ }^{\mathrm{T}}$ Sample size. Excluding respondents who did not respond to any age category dropped 22 respondents. 17 of these were from small, 4 from medium, and 1 from large operations.
${ }^{2}$ Mean of binary variable reported as a percentage.
${ }^{3}$ Standard deviation.

Thirty-four (34) percent of all primary operators represented in this survey reported High School as their highest level of education, 27 percent reported attending some college, and 19 percent had received a bachelors degree. A much higher percentage (60 percent) of primary operators of large operations had received their bachelors (Table 56). The USDA ERS Agricultural Resource Management study reported that for all farms operators 24.7 percent of operators reported "some college" and only 18.9 percent were college graduates. US Census data for rural education levels are similar with 25.7 percent of non-metro persons 25 or more years old reported some college and 15.5 percent had graduated with a college degree. Education levels for respondents similar to these national and regional estimates for rural education suggest no non-response bias in the sample.

An average respondent to the Wyoming Beef Cattle Producers Survey reported having 35 years of experience raising beef cattle. The average ranged from 34 for small to 39 years for large operations (Table 57).
Forty-two (42) percent of survey respondents reported being employed off-farm at least part time-along with 46 percent of their spouses. Both respondents and their spouses from small operations were more likely to report working off-farm (Table 58).

Table 56.
Primary operator's highest level of education.

	By Operation Size			
		$20-299$	$300-999$	$\geq 1,000$
Highest Level of Education	$\mathrm{n}=814^{1}$	$\mathrm{n}=610$	$\mathrm{n}=189$	$\mathrm{n}=15$
High School	$34 \%^{2}$	35%	32%	13%
	$(0.47)^{3}$	(0.48)	(0.47)	(0.35)
Some College	27%	26%	33%	13%
	(0.45)	(0.44)	(0.47)	(0.35)
Technical / Vocational Degree	8%	11%	1%	0
	(0.3)	(0.34)	(0.1)	-
Bachelors Degree	19%	17%	22%	60%
	(0.39)	(0.37)	(0.41)	(0.51)
Some Graduate Education	4%	4%	5%	7%
	(0.2)	(0.19)	(0.22)	(0.26)
Graduate Degree	8%	8%	9%	7%
	(0.27)	(0.26)	(0.29)	(0.26)

${ }^{1}$ Sample size. ${ }^{2}$ Mean of binary variable reported as a percentage.
${ }^{3}$ Standard deviation.
${ }^{3}$ Standard deviation.
Table 57.
Years of experience raising beef cattle.

	By Operation Size		
All Ranches	$20-299$	$300-999$	$\geq 1,000$
$\mathrm{n}=813^{1}$	Bred Cows	Bred Cows	Bred Cows
35^{2}	$\mathrm{n}=610$	$\mathrm{n}=188$	$\mathrm{n}=15$
$(17)^{3}$	34	37	39
	(17)	(16)	(14)

${ }^{\mathrm{T}}$ Sample size. Limiting answers to 100 years of experience dropped 1 response from medium operations.
${ }^{2}$ Mean years (rounded to the nearest whole number).
${ }^{3}$ Standard deviation (rounded to the nearest whole number).

Table 58.

"Are you or your spouse employed off-farm?"

Employee		By Operation Size		
	All Ranches $\mathrm{n}=814^{1}$	$20-299$ Bred Cows $\mathrm{n}=610$	$300-999$ Bred Cows $\mathrm{n}=189$	$\geq 1,000$ Bred Cows $\mathrm{n}=15$
Self	$\begin{aligned} & \hline 42 \%^{2} \\ & (0.49)^{3} \end{aligned}$	$\begin{aligned} & \hline 50 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & \hline 18 \% \\ & (0.39) \end{aligned}$	$\begin{aligned} & \hline 13 \% \\ & (0.35) \end{aligned}$
Spouse	$\begin{aligned} & 46 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 50 \% \\ & (0.50) \end{aligned}$	$\begin{aligned} & 34 \% \\ & (0.47) \end{aligned}$	$\begin{aligned} & 20 \% \\ & (0.41) \end{aligned}$

[^19]An average of 65 percent of household income for all respondents was reported to be from ranching or farming. This percentage was closely related to operation size with 81 percent of household income from farming or ranching for large and medium operations and 59 percent for small operations (Table 59).

Table 59.

Percentage of household income from ranching or farming.

	By Operation Size		
	$20-299$	$300-999$	$\geq 1,000$
All Ranches	Bred Cows	Bred Cows	Bred Cows
$\mathrm{n}=704^{1}$	$\mathrm{n}=519$	$\mathrm{n}=171$	$\mathrm{n}=14$
$65 \% 0^{2}$	59%	81%	81%
$(33)^{3}$	(33)	(26)	(32)

${ }^{1}$ Sample size. Eliminating answers of 0% dropped 110 responses: 91 from small, 18 from medium, and 1 from large operations.
${ }^{2}$ Mean percentage.
${ }^{3}$ Standard deviation.

The distribution of respondents reported gross annual income from the previous year centered around $\$ 100,000$ to $\$ 249,999$ with 64 percent of all respondents reporting between $\$ 25,000$ and $\$ 249,999$ in gross sales. There was a strong relationship between gross sales and operation size. None of the largest producers reported gross sales in 2003 less than $\$ 250,000$ while the average small operator reported $\$ 25,000$ to $\$ 49,999$ (Table 60).

Table 60.
Last year's annual gross ranch sales.

Gross Annual Income		By Operation Size		
	All Ranches $\mathrm{n}=745^{1}$	$\begin{gathered} 20-299 \\ \text { Bred Cows } \\ \mathrm{n}=555 \\ \hline \end{gathered}$	300-999 Bred Cows $\mathrm{n}=176$	$\begin{gathered} \geq 1,000 \\ \text { Bred Cows } \\ \mathrm{n}=14 \end{gathered}$
Less Than \$1,000	$\begin{aligned} & <1 \%^{2} \\ & (0.06)^{3} \end{aligned}$	$\begin{gathered} 1 \% \\ (0.07) \end{gathered}$	0	0
\$1,000 to \$4,999	$\begin{gathered} 2 \% \\ (0.13) \end{gathered}$	$\begin{gathered} 2 \% \\ (0.15) \end{gathered}$	0	0
\$5,000 to \$9,999	$\begin{gathered} 3 \% \\ (0.18) \end{gathered}$	$\begin{gathered} 4 \% \\ (0.20) \end{gathered}$	$\begin{gathered} 1 \% \\ (0.08) \end{gathered}$	0
\$10,000 to \$24,999	$\begin{aligned} & 15 \% \\ & (0.35) \end{aligned}$	$\begin{aligned} & 19 \% \\ & (0.39) \end{aligned}$	$\begin{gathered} 1 \% \\ (0.11) \end{gathered}$	0
\$25,000 to \$49,999	$\underset{(0.4)}{20 \%}$	$\begin{aligned} & 26 \% \\ & (0.44) \end{aligned}$	$\begin{gathered} 4 \% \\ (0.20) \end{gathered}$	0
\$50,000 to \$99,999	$\underset{(0.4)}{20 \%}$	$\begin{aligned} & 25 \% \\ & (0.43) \end{aligned}$	$\begin{gathered} 9 \% \\ (0.28) \end{gathered}$	0
\$100,000 to \$249,999	$\begin{aligned} & 24 \% \\ & (0.43) \end{aligned}$	$\begin{aligned} & 19 \% \\ & (0.39) \end{aligned}$	$\begin{aligned} & 41 \% \\ & (0.49) \end{aligned}$	0
\$250,000 to \$499,999	$\begin{aligned} & 12 \% \\ & (0.33) \end{aligned}$	$\begin{aligned} & 4 \% \\ & (0.2) \end{aligned}$	$\begin{aligned} & 36 \% \\ & (0.48) \end{aligned}$	$\begin{aligned} & 14 \% \\ & (0.36) \end{aligned}$
\$500,000 or more	$\begin{aligned} & 4 \% \\ & (0.2) \end{aligned}$	$\begin{gathered} 1 \% \\ (0.07) \end{gathered}$	$\begin{gathered} 9 \% \\ (0.28) \end{gathered}$	$\begin{aligned} & 86 \% \\ & (0.36) \end{aligned}$

${ }^{\top}$ Sample size. Excluding respondents who did not respond to any income category dropped 69 respondents.
55 of these were from small, 13 from medium, and 1 from large operations.
${ }^{2}$ Mean of binary variable reported as a percentage.
${ }^{3}$ Standard deviation.

References Cited

Wyoming Agricultural Statistics 2004. USDA NASS, Wyoming Statistical Office.
National Agricultural Statistical Service. 2002. Census of Agriculture.
USDA Economic Research Service. 1998. Agricultural Resource Management Study, version 1.

Appendix A: Sampling Population

Number of Beef Cattle Operators by County \& Size Group

County	$\mathbf{1 - 4 9}$ head*	$\mathbf{5 0 - 2 9 9}$ head	$\mathbf{3 0 0} \mathbf{- 1 , 0 0 0}$ head	$\mathbf{> 1 , 0 0 0}$ head	Total
Albany	56	68	61	23	208
Big Horn	109	108	55	25	297
Campbell	90	162	104	18	374
Carbon	40	57	62	39	198
Converse	57	87	71	27	242
Crook	74	161	105	18	358
Fremont	228	239	126	35	628
Goshen	114	191	118	27	450
Hot Springs	32	40	12	9	93
Johnson	54	79	76	25	234
Laramie	122	135	52	23	332
Lincoln	102	134	49	11	296
Natrona	75	57	49	27	208
Niobrara	17	89	91	17	214
Park	147	104	43	13	307
Platte	99	147	73	21	340
Sheridan	140	146	68	18	372
Sublette	39	48	67	22	176
Sweetwater	32	36	28	4	100
Teton	15	7	9	4	35
Uinta	53	81	54	12	200
Washakie	30	41	42	10	123
Weston	36	66	48	21	171
State Total	1,761	2,283	1,463	449	5,956

Source: Wyoming Agricultural Statistics Service personal communication January 10, 2005.

* Operations with fewer than 20 head were eliminated from the 1-49 head category, leaving 771 operations with 20-49 head. Total operators in the sampling frame was 4,966 for the state.

Appendix B: Data Coding, Cleaning, and Aggregation

The following explains the data cleaning operations that were conducted on the original NASS dataset.

1- Limit to valid responses then replace nonsense answers with valid ones. Using SAS to find the maximums and minimums of all the variables, it was possible to identify discrete variables that were too big or otherwise invalid. Once specific surveys were identified, SAS code was written to fix the problems. For example var190xx corresponds to a "yes/no" question on vaccination. However three responses in the SAS data set were larger than " 1 ." Once the actual surveys were checked the following code changed the SAS data set to reflect the correct response.

```
if var190xx >1 then var190xx =1;
```

2- Force valid percentages. Survey questions that required that responses be in the form a percent: invalid responses $=$ those over 100%. Here the SAS code used to correct the problem looked like this:
if POID=800002990 then var111xx =100;

Unlike cleaning discrete variables, here the SAS code identifies a specific survey and then gives the variable to be corrected.

3- Force percentages to sum to 100. Many of the questions asking for percentages required that the sum of the responses equaled 100%. In order to correct mistakes on these questions, new variables had to be created that would sum the responses. For example question 2 asks for the percentage of annual gross sales from different types of ranch enterprises. The created variable is termed "q12var410" the "q12" means question 12 of the survey and "var410" is the first variable that is in the summation. Here is the SAS code which creates the new variable "q12var410."
q12var410= $\operatorname{var} 410 x x+\operatorname{var} 412 x x+\operatorname{var} 414 x x+\operatorname{var} 415 x x+\operatorname{var} 416 x x ;$

Once the new variables were created mistakes were corrected in the same manner as other percent errors. SAS identified the survey responses which were too big (i.e. greater than 100%) and then the appropriate SAS code fixed the problem. The following SAS code corrects a problem with "q12var410." Note how the new numbers add up to 100 .

```
if POID=300066880 then var410xx =25;
if POID=300066880 then var411xx =5;
if POID=300066880 then var415xx =70;
```

4- Simple response count. Even after these changes were made a small number of surveys still had to be corrected. With these surveys it could not be reasoned out what the
appropriate response was. So as to not loose the data entirely by coding these responses as missing new variables were created to simply count if any response was made. The following is SAS code which created counting variables for question 12.

```
if var410xx GE 1 then SB=1; else SB =0;
if var412xx GE 1 then VA =1; else VA =0;
if var415xx GE 1 then PS =1; else PS =0;
if var416xx GE 1 then FC =1; else FC =0;
if var411xx GE 1 then WB =1; else WB =0;
if var414xx GE 1 then OT =1; else OT =0;
```

5- "Non-zeros". Included with this write-up are the summary statistics for each variable, including the created variables. During the data entry process non responses were entered in as zeros, SAS will count a zero when performing various operations. This leads to zeros weighing down the averages. To correct for this SAS code was written to change zeros to missing. The following is the SAS code used to change zeros to missing. In SAS "." denotes a missing value.

```
if var190xx =0 then var190xx =.;
if var191xx =0 then var191xx =.;
if var192xx =0 then var192xx =.;
if var193xx =0 then var193xx =.;
if var194xx =0 then var194xx =.;
```


Appendix C: Statistical Analysis / Output

Part A: General Ranch Description

The following code was used for every question to 1) limit the dataset to producers with 20 or more cattle, and 2) sort the data into three strata by operation size:

```
*ignore operations with less than 20 bred cattle;
if var330xx le 19 then delete;
*sort into three operation sizes based on # of bred cows;
if var330XX ge 20 and var330XX lt 300 then opsize=1;
if var330xx ge 300 and var330xx lt 1000 then opsize=2;
if var330xx ge 1000 then opsize=3;
```


Question 1

Procedure:

- "Including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- For percentage owned VS leased: excluded incorrect responses (i.e. answers that did not sum to 100).
- Calculated percent of total for each type of private and public land.
- SAS procedure, SAS UNIVARIATE procedure.

Code:

```
*eliminate answers not summing to 100%;
var112x1 = var111xx + var112xx;
if var112x1 ne 100 then var111xx=.;
if var112x1 ne 100 then var112xx=.;...
var128x1 = var127xx + var128xx;
if var128x1 ne 100 then var127xx=.;
if var128x1 ne 100 then var128xx=.;
*Private Land Percent Total;
var121x2 = var110xx + ...var126xx;
pt110 = var110xx / var121x2;...
pt126 = var126xx / var121x2;
*Public Land Percent Total;
var131x1 = var129xx + var130xx + var131xx;
pt129 = var129xx / var131x1;...
pt131 = var131xx / var131x1;
Output:
```


ff

Harvested VAR116XX	$\begin{gathered} C r o p l a n d ~ \\ 814 \end{gathered}$	$\begin{aligned} & \text { for Silage } \\ & 12.4901720 \end{aligned}$	140.120	0	
VAR117XX	50	77.6000000	39.5670446	0	100.0000000
VAR118XX	50	22.4000000	39.5670446	0	100.000000

| Irrigated | and | Sub-irrigated Hay | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VAR119XX | 814 | 247.5995086 | 786.9976653 | 0 | 17117.00 |
| VAR120XX | 434 | 83.4147465 | 32.6078720 | 0 | 100.0000000 |
| VAR121XX | 434 | 16.5852535 | 32.6078720 | 0 | 100.0000000 |

ff

Other (specify)					
VAR126XX	814	83.7948403	1196.11	0	30000.00
VAR127XX	50	79.5400000	37.9307694	0	100.0000000
ff					
Private Land Percent of Total					
var 121×2	814	7799.11	20230.60	12.000000	380150.00
pt 110	814	0.9377618	2.5552619	0	48.0824094
pt 113	814	0.0066597	0.0290527	0	0.3846593
pt 116	814	0.0016015	0.0179662	0	0.3846593
pt 119	814	0.0317471	0. 1009087	0	2. 1947376
pt 122	814	0.0114854	0. 0298551	0	0.2692615
pt 126	814	0.0107442	0.1533652	0	3.8465928

fufff

VAR129XX	814	1437.52	14264.32	0
VAR130XX	814	4226.34	25327.90	00000.00
VAR131XX	814	669.2481572	2956.67	00000.00

var 131×1	814	6333.11	32431.68	0	463000.00
pt 129	814	0.2269854	2.2523411	0	55.2651067
pt 130	814	0.6673400	3.9992835	0	63.1601220

| pt131 | 814 | 0.1056745 | 0.4668598 | 0.9477192 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Public and Private Land by Operation Size
ff

VAR110XX	610	2982.84	4960.06	0	50000.00
VAR113XX	610	38.0295082	157.0445507	0	2000.00
VAR116XX	610	4.8557377	27.0502575	0	300.0000000
VAR119 X ${ }^{\text {V }}$	610	135.8590164	353.1655623	0	5800.00
VAR122XX	610	59.7606557	134.5586415	0	900.0000000
VAR126XX	610	39.0049180	572.4702343	0	14000.00
VAR129XX	610	397.9655738	3194.91	0	50000.00
VAR130XX	610	1657.98	10089.16	0	125000.00
VAR131XX	610	217.9442623	620.5247423	0	8600.00
VAR $330 \times X$	610	105.6885246	74.3040266	20.0000000	298.0000000
fffffff		fffffffff	ffffffffff	fffffffff	fffffffffff
VAR110XX	189	16177.56	opsize=2. 22651.19	0	150000.00
VAR113XX	189	74.3968254	297.9064472	0	2000.00
VAR116XX	189	22. 2486772	186.4515982	0	2500.00
VAR119XX	189	440.8730159	681.6559349	0	5000.00
VAR122XX	189	186.7777778	400.7762990	0	2100.00
VAR126XX	189	235.0052910	2257.27	0	30000.00
VAR129XX	189	4742.78	28824.00	0	350000.00
VAR130XX	189	10706.18	45738.73	0	400000.00
VAR131XX	189	1762.34	5423.72	0	63000.00
VAR330XX	189	455.8306878	161.6873556	300.0000000	950.0000000

ff.

Question 2

Procedure:

- "Including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded incorrect percentage responses (i.e. answers that did not sum to 100).
- Aggregated non-beef enterprises.
- Created variables to calculate frequency counts for non-beef enterprises.
- SAS Means procedure.

Code:

```
*eliminates answers not summing to 100;
var153x1 = var140xx + var141xx + var142xx + var143xx + var144xx +
var145xx + var146xx + var147xx + var148xx +
var149xx + var150xx + var151xx + var153xx;
if var153x1 ne 100 then delete;
*aggregate variable for all non-beef enterprises;
var153x2 = var143xx + var147xx + var148xx + var149xx + var150xx +
var151xx;
*For frequency counts of specific non-beef enterprises;
if var143xx gt 0 then var143x1 = 1;
if var147xx gt 0 then var147x1 = 1;
if var148xx gt 0 then var148x1 = 1;
if var149xx gt 0 then var149x1 = 1;
if var150xx gt 0 then var150x1 = 1;
if var151xx gt 0 then var151x1 = 1;
Output:
```


VAR147 XX	Horses	185	0.82	4.62	0.00	50.00
VAR148XX	Buffalo	185	0.00	0.00	0.00	0.00
VAR149XX	GOATS	185	0.01	0.15	0.00	2.00
VAR150XX	Dairy	185	0.01	0.15	0.00	2.00
VAR151XX	Hogs	185	0.00	0.00	0.00	0.00
VAR153XX	Other	185	0.95	5.65	0.00	60.00
var 153×2	Sum Non-Beef	185	3.12	11.48	0.00	76.00
VAR140XX	Cow/Calf	15	881.47	26.69	0.00	100.00
VAR141XX	Backgnd	15	2.00	7. 75	0.00	30.00
VAR142XX	Feedlot	15	0.00	0.00	0.00	0.00
VAR143XX	Sheep	15	3.00	11.62	0.00	45.00
VAR144XX	Cow/Yrlg	15	9.60	26.11	0.00	99.00
VAR145XX	Club Clv	15	0.07	0.26	0.00	1.00
VAR146XX	Repl Heif	15	1.40	3.50	0.00	10.00
VAR147XX	Horses	15	2.13	6.46	0.00	25.00
VAR148XX	Buffalo	15	0.00	0.00	0.00	0.00
VAR149XX	GOATS	15	0.00	0.00	0.00	0.00
VAR150XX	Dairy	15	0.00	0.00	0.00	0.00
VAR151xX	Hogs	15	0.00	0.00	0.00	0.00
VAR153XX	Other	15	0.33	1.29	0.00	5. 00
var 153×2	Sum Non-Beef	15	5.13	12.77	0.00	45.00
fffffffff	ffffffffffff		fffff f	ffff	fffff	fffffffff
var 1	3×149	que	-			1.00
var 1	¢ 102					1.00
var 1	x 10					
var 1	$\times 13$					1.00
var1	$\times 13$					1.00
var 1	$\times 1$ - 6					1.00
ffff	ffffffffffff		$f f f_{f f}^{f f} f$	$\begin{aligned} & \text { By fff } \\ & \text { Sype } \end{aligned}$	$f_{f f f f f}^{f}$	$f \mathrm{fff}$
			- ops			
var 1	3×134					1.00
var 1	$\times 145$					1.00
var 1	$8 \times 1 \quad 0$					
var 1	91-2					1.00
var 1	x1 2					1.00
var1	$\times 1$					1.00
			op			
var	x 1					1.00
var 1	$\times 1-13$					1.00
var 1	8×1					
var 1	$\times 1$					1.00
var1	¢ 1					1.00
var 1	x 1					.
var 1	<1		- ops			1.00
var 1	$\times 1$					1.00
var 1	x 1					
var 1	<1					,
var 1	x1 0					
var 1	x 1					.

Questions 3 and 4

Procedure:
" "including zeros" dataset.

- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded incorrect percentage responses (i.e. answers that did not sum to 100).
- SAS Means procedure.

Code:

```
*ignore responses not summing to 100%;
var171x1 = var160xx + ...var171xx;
var183x1 = var172xx + ...var183xx;
if var171x1 ne 100 then delete;
```

if var183x1 ne 100 then delete;
Output:

VAR177XX	May	588	0.35	4.68	0.00	100.00
VAR181XX	June	588	0.54	6.27	0.00	100.00
VAR174XX	july	588	0.49	6.55	0.00	100.00
VAR178XX	Aug	588	1. 27	10.42	0.00	100.00
VAR182XX	Sept	588	13.29	32.54	0.00	100.00
VAR175XX	Oct	588	56.41	47.74	0.00	100.00
VAR179XX	Nov	588	21.85	40.12	0.00	100.00
VAR183XX	Dec	588	3.14	15.98	0.00	100.00
			--			
VAR172XX	Jan	182	0.69	7.63	0.00	100.00
VAR176XX	Feb	182	0.30	3.72	0.00	50.00
VAR180XX	March	182	1. 29	10.67	0.00	100.00
VAR173XX	April	182	0.93	8.39	0.00	100.00
VAR177XX	May	182	0.58	4.85	0.00	50.00
VAR181XX	June	182	0.00	0.00	0.00	0.00
VAR174XX	july	182	0.00	0.00	0.00	0.00
VAR178XX	Aug	182	1. 59	11.84	0.00	100.00
VAR182XX	Sept	182	8.93	27.01	0.00	100.00
VAR175 XX	Oct	182	54.74	46.89	0.00	100.00
VAR179XX	Nov	182	28.31	42.31	0.00	100.00
VAR183XX	Dec	182	2.64	14.32	0.00	100.00
			-.			
VAR172XX	Jan	15	0.00	0.00	0.00	0.00
VAR176XX	Feb	15	0.00	0.00	0.00	0.00
VAR180XX	March	15	0.00	0.00	0.00	0.00
VAR173XX	April	15	0.00	0.00	0.00	0.00
VAR177XX	May	15	0.00	0.00	0.00	0.00
VAR181XX	June	15	0.00	0.00	0.00	0.00
VAR172XX	jan	15	0.00	0.00	0.00	0.00
VAR176XX	Feb	15	0.00	0.00	0.00	0.00
VAR180XX	March	15	0.00	0.00	0.00	0.00
VAR173XX	April	15	0.00	0.00	0.00	0.00
VAR177XX	May	15	0.00	0.00	0.00	0.00
VAR181XX	June	15	0.00	0.00	0.00	0.00

Question 5

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not check any of the options.
- SAS Means procedure.

Code:
*exclude respondents who did not check any box;
var203x1 = var190xx + var191xx + var192xx + var193xx + var194xx +
var195xx + var196xx +
var197xx + var198xx + var199xx + var200xx + var201xx + var203xx;
if var203x1 = 0 then delete;
Output:

Question	5- Al R	ches				
Variable	Label	N	Mean	Std Dev	Mi ni mum	Maxi mum
VAR190XX	vacc	809	0.97	0.16	0.00	1.00
VAR192XX	deworm	809	0.72	0.45	0.00	1.00
VAR194XX	insect	809	0.73	0.45	0.00	1.00
VAR196XX	i mplant	809	0.19	0.39	0.00	1.00
VAR198XX	dehorn	809	0.56	0.50	0.00	1.00
VAR200XX	cast	808	0.95	0.22	0.00	1.00
VAR191XX	an id	809	0.66	0.48	0.00	1.00
VAR193XX	body c	809	0.21	0.40	0.00	1.00
VAR195XX	preg	809	0.68	0.47	0.00	1.00
VAR197XX	breed s	809	0.25	0.43	0.00	1.00
VAR199XX	ai	809	0.18	0.38	0.00	1.00
VAR201XX	vet c	809	0.62	0.48	0.00	1.00
VAR203XX	other	809	0.02	0.14	0.00	1.00

 Question 5- By Operation Size

Variable	Label	N	Mean	Std Dev	Mi ni mum	Maxi mum
VAR190XX	vacc	605	0.97	0.17	0.00	1.00
VAR192XX	deworm	605	0.68	0.47	0.00	1.00
VAR194XX	insect	605	0.71	0.45	0.00	1.00
VAR196XX	i mplant	605	0.15	0.36	0.00	1.00
VAR198XX	dehorn	605	0.52	0.50	0.00	1.00
VAR200XX	cast	604	0.94	0.23	0.00	1.00
VAR191XX	an id	605	0.66	0.47	0.00	1.00
VAR193XX	body c	605	0.18	0.38	0.00	1.00
VAR195XX	preg	605	0.63	0.48	0.00	1.00
VAR197XX	breed s	605	0.20	0.40	0.00	1.00
VAR199XX	ai	605	0.17	0.38	0.00	1.00
VAR201XX	vet c	605	0.59	0.49	0.00	1.00
VAR203XX	other	605	0.02	0.15	0.00	1.00
VAR190XX	vacc	189	0.99	0.07	0.00	1.00
VAR192XX	deworm	189	0.82	0.39	0.00	1.00
VAR194XX	insect	189	0.78	0.42	0.00	1.00
VAR196XX	i mplant	189	0.30	0.46	0.00	1.00
VAR198XX	dehorn	189	0.69	0.46	0.00	1.00
VAR200XX	cast	189	0.96	0.19	0.00	1.00
VAR191XX	an id	189	0.64	0.48	0.00	1.00
VAR193XX	body c	189	0.29	0.45	0.00	1.00
VAR195XX	preg	189	0.85	0.36	0.00	1.00
VAR197XX	breed s	189	0.40	0.49	0.00	1.00
VAR199XX	ai	189	0.20	0.40	0.00	1.00
VAR201XX	vet c	189	0.70	0.46	0.00	1.00
VAR203XX	other	189	0.02	0.14	0.00	1.00
VAR190XX	vacc	15	0.930	0.26	0.00	1.00
VAR192XX	deworm	15	0.87	0.35	0.00	1.00
VAR194XX	insect	15	0.73	0.46	0.00	1.00
VAR196XX	i mplant	15	0.27	0.46	0.00	1.00
VAR198XX	dehorn	15	0.60	0.51	0.00	1.00
VAR200XX	cast	15	1.00	0.00	1.00	1.00
VAR191XX	an id	15	0.80	0.41	0.00	1.00
VAR193xX	body c	15	0.33	0.49	0.00	1.00
VAR195XX	preg	15	0.80	0.41	0.00	1.00
VAR197XX	breed s	15	0.40	0.51	0.00	1.00
VAR199XX	ai	15	0.27	0.46	0.00	1.00
VAR201XX	vet c	15	0.87	0.35	0.00	1.00
VAR203XX	other	15	0.00	0.00	0.00	0.00

Question 6
Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded incorrect percentage responses (i.e. answers that did not sum to 100).
- SAS Means procedure.

Code:

```
*excludes respondents with responses that did not sum to 100;
var223x1 = var210xx +... var 223xx;
if var223x1 ne 100 then delete;
Output:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Question 6-All Ranches} \\
\hline VAR210XX & p |vstk & 673 & 8.93 & 13.85 & 0.00 & 100.00 \\
\hline VAR212XX & alf & 673 & 17.83 & 20.91 & 0.00 & 100.00 \\
\hline VAR214XX & grain & 673 & 3.67 & 7. 28 & 0.00 & 80.00 \\
\hline VAR216XX & feed c & 673 & 5.00 & 6.88 & 0.00 & 36.00 \\
\hline
\end{tabular}
```

VAR218XX	salt	673	4.21	5.47	0.00	80.00
VAR220XX	fert	673	5.73	9. 36	0.00	60.00
VAR211XX	vet s	673	6.15	5. 44	0.00	47.00
VAR213XX	I abor	673	7. 51	12.32	0.00	90.00
VAR215 XX	fuel	673	15.37	12.13	0.00	80.00
VAR217XX	intst	673	6.57	9. 72	0.00	75.00
VAR219XX	prof s	673	1.66	3.13	0.00	40.00
VAR221XX	repair	673	8.51	8.69	0.00	50.00
VAR223XX	other	673	8.86	15.78	0.00	84.00
fffffffff	fffff	fff	ffff	ffff	fff	fffff

Question 6- By Operation Size

VAR210XX	p \|votk	508	8. 01	13. 26	0.00	87.00	
VAR212XX	alf	508	19.66	22.03	0.00	100.00	
VAR214XX	grain	508	3.90	7.65	0.00	80.00	
VAR216XX	feed c	508	4.61	6.82	0.00	36.00	
VAR218XX	salt	508	4.33	5.78	0.00	80.00	
VAR220XX	fert	508	5.70	9. 54	0.00	60.00	
VAR211XX	vet s	508	6.30	5.68	0.00	47.00	
VAR213XX	I abor	508	5.97	11.75	0.00	90.00	
VAR215XX	fuel	508	16. 19	12.59	0.00	80.00	
VAR217XX	intst	508	6.26	9.92	0.00	75.00	
VAR219XX	prof s	508	1.44	2.58	0.00	15.00	
VAR221XX	repair	508	8.60	8.92	0.00	50.00	
VAR223XX	other	508	9.03	16. 21	0.00	84.00	
			-				
VAR210XX	p \| vstk	152	12.47	15.61	0.00	100.00	
VAR212XX	alf	152	12. 34	15.71	0.00	89.00	
VAR214XX	grain	152	2.96	5.77	0.00	38.00	
VAR216XX	feed c	152	6.46	7.10	0.00	30.00	
VAR218XX	salt	152	3.70	4.17	0.00	25.00	
VAR220XX	fert	152	5.60	8.37	0.00	60.00	
VAR211XX	vet s	152	5.76	4.67	0.00	25.00	
VAR213XX	I abor	152	11.96	12.90	0.00	50.00	
VAR215XX	fuel	152	13. 32	10.45	0.00	60.00	
VAR217XX	intst	152	7.47	8.68	0.00	35.00	
VAR219XX	prof s	152	2.05	3.30	0.00	20.00	
VAR221XX	repair	152	8.47	8.15	0.00	50.00	
VAR223XX	other	152	7.44	13.43	0.00	60.00	
			\cdots				
VAR210XX	p \\| vstk	13	3.31	5.19	0.00	15.00	
VAR212XX	alf	13	10.85	17.32	0.00	60.00	
VAR214XX	grain	13	3.08	8.55	0.00	30.00	
VAR216XX	feed c	13	3.54	4.03	0.00	10.00	
VAR218XX	salt	13	5.15	6.52	0.00	25.00	
VAR220XX	fert	13	8.38	13.07	0.00	37.00	
VAR211XX	vet s	13	5. 23	4. 21	0.00	15.00	
VAR213XX	I abor	13	15.69	12.41	0.00	40.00	
VAR215XX	fuel	13	7.00	3.94	0.00	15.00	
VAR217XX	intst	13	8.15	12.79	0.00	45.00	
VAR219XX	prof s	13	5.69	10.46	0.00	40.00	
VAR221XX	repair	13	5.23	4.04	0.00	10.00	
VAR223XX	other	13	18.69	21.30	0.00	67.00	

Question 7

Procedure for number employed:

- Calculated from both "no zeros" and "including zeros" datasets.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not enter any amount for family or non-family number employed or for any month.
- SAS Means procedure.

Code:

*Requires some valid answer for family or non-family labor;

```
if var230xx + var231xx + var232xx + var233xx + var234xx + var235xx +
var236xx + var237xx + var238xx + var239xx + var240xx + var241xx +
var242xx + var243xx
+ var244xx + var245xx + var246xx + var247xx + var248xx + var249xx +
var250xx + var251xx + var252xx + var253xx + var254xx + var255xx +
var256xx + var257xx
+ var260xx + var261xx + var262xx + var263xx + var264xx + var265xx +
var266xx + var267xx + var268xx + var269xx + var270xx + var271xx +
var272xx + var273xx
+ var274xx + var275xx + var276xx + var277xx + var278xx + var279xx +
var280xx + var281xx + var282xx + var283xx + var284xx + var285xx +
var286xx + var287xx
= 0 then delete;
```

Output:

 Q7- \# Family Employed

ff
Q7- \# Non-Family Employed by Operation Size

VAR260xX	\#	Emp	Y/R	596	0.14	0.44	0.00	5.00
VAR274XX	\#	Emp	P/T	596	0.47	1.41	0.00	20.00
VAR260XX	\#	Emp	Y/R	189	-0.77	1.54	0.00	12.00
VAR274XX	\#	Emp	P/T	189	1.29	2.69	0.00	20.00
VAR260XX	\#	Emp	Y/R	15	5. 80	8.74	0.00	25.00

VAR274XX \# Emp P/T 15
3.40
4. 34
0.00
15.00

Procedure for part-time or seasonal family by months employed:

- Calculated from both "no zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not give a positive number for number of part-time or seasonal family members employed.
- SAS Means procedure.

Code:
*Requires a positive answer to \# part time or seasonal family employed; if var244xx = 0 then delete;

Output:

fff

VAR245XX	J an	9	1.00	0.00	1.00	1.00
VAR246XX	Feb	18	1.00	0.00	1.00	1.00
VAR247XX	March	33	1.00	0.00	1.00	1.00
VAR248XX	April	47	1.00	0.00	1.00	1.00
VAR249XX	May	66	1.00	0.00	1. 00	1. 00
VAR250XX	June	97	1.00	0.00	1.00	1.00
VAR251XX	july	96	1.00	0.00	1.00	1.00
VAR252XX	Aug	93	1.00	0.00	1.00	1. 00
VAR253XX	Sept	52	1.00	0.00	1.00	1.00
VAR254XX	Oct	39	1.00	0.00	1.00	1. 00
VAR255XX	Nov	17	1.00	0.00	1.00	1.00
VAR256XX	Dec	8	1.00	0.00	1.00	1.00
VAR257XX	Al 1	54	1.00	0.00	1.00	1.00

VAR246XX	Feb	1	1.00
VAR247XX	1.00		

VAR247XX	March	5	1.00
VAR248XX	April	17	1.00

VAR248XX	April	17	1.00
VAR249XX	May	23	1.00

| VAR250XX June | 39 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| JAR25 | 1.00 | 1.00 | 1.00 | |

VAR251XX july	39	1.00	0.00	1.00	1.00

VAR252XX	Aug	38	1.00	0.00	1.00	1.00
VAR253XX	Sept	13	1.00	0.00	1.00	1.00

VAR254XX	Ct	15	1.00	0.00	1.00

VAR255XX	NoV	10	1.00	0.00	1.00
VAR256XX	Dec	5	1.00	0.00	1.00
VAR257XX	AII	24	1.00	0.00	1.00

VAR257XX	Al 1	24	1.00	0.00	1.00	1.00

VAR245XX	J an	0				
VAR246XX	Feb	0				
VAR247XX	March	0				
VAR248XX	April	0				
VAR249XX	May	2	1. 00	0.00	1.00	1.00
VAR250XX	June	4	1.00	0.00	1.00	1. 00
VAR251XX	$u l y$	3	1.00	0.00	1.00	1.00

VAR252XXX Aug	3	1.00	0.00	1.00	1.00	
VAR253XX	Sept	0	1.00	\vdots	1.00	1.00
VAR254XX	0 ct	1	1.00	1.00	1.00	
VAR255XX	Nov	1	1.00		1.00	1.00
VAR256XX	Dec	0	1.00			

Procedure for part-time or seasonal non-family by months employed:

- Calculated from both "no zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not give a positive number for number of part-time or seasonal non-family members employed.
- SAS Means procedure.

Code:
*Requires a positive answer to \# non-family part-time or seasonal employed;
if var274xx $=0$ then delete;
Output:

VAR277XX	March	1	1.00		1.00	1.00
VAR278XX	April	3	1.00	0.00	1.00	1.00
VAR279XX	May	5	1.00	0.00	1.00	1.00
VAR280XX	June	9	1.00	0.00	1.00	1.00
VAR281XX	july	8	1.00	0.00	1.00	1.00
VAR282XX	Aug	7	1.00	0.00	1.00	1.00
VAR283XX	Sept	3	1.00	0.00	1.00	1.00
VAR284XX	Oct	6	1.00	0.00	1.00	1.00
VAR285XX	Nov	2	1.00	0.00	1.00	1.00
VAR286XX	Dec	0				
VAR287XX	Al I	0		,	,	

Question 8

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not enter any positive amount for any feed source.
- Limited variable for months fed to a number between 1 and 12.
- SAS Means procedure.

Code:

```
*deletes respondents who did not enter amounts for any feed source;
var320x1 = var290xx + var294xx + var298xx + var302xx + var306xx +
var310xx + var314xx + var319xx
+ var291xx + var295xx + var299xx + var303xx + var307xx + var311xx +
var315xx + var320xx;
if var320x1 = 0 then delete;
*deletes responses to months that are not 1-12;
if var292xx = 0 then var292xx = .;if var296xx = 0 then var296xx = .;
if var300xx = 0 then var300xx = .;if var304xx = 0 then var304xx = .;
if var308xx = 0 then var308xx = .;if var312xx = 0 then var312xx = .;
if var316xx = 0 then var316xx = .;if var321xx = 0 then var321xx = .;
if var293xx = 0 then var293xx = .;if var297xx = 0 then var297xx = .;
if var301xx = 0 then var301xx = .;if var305xx = 0 then var305xx = .;
if var309xx = 0 then var309xx = .;if var313xx = 0 then var313xx = .;
if var317xx = 0 then var317xx = .;if var322xx = 0 then var322xx = .;
```

Output:

Variabl	Labe	N	Mean Std Dev		mu	Maxi mum
fff						
On F	m So	ces	hes			
VAR290XX	hay	733	216.53	1151.48	0.00	30000.00
VAR294XX	alf	733	122.89	303.77	0.00	3000.00
VAR298XX	prot	733	1.26	10.23	0.00	150.00
VAR302XX	conc	733	0.42	4.41	0.00	100.00
VAR 306 XX	corn	733	6.87	39.12	0.00	700.00
VAR310 XX	crop	733	60.75	293.68	0.00	4500.00
VAR314XX	grn	733	275.97	2012.81	0.00	35000.00
VAR319XX	othr	733	28.99	350.28	0.00	6000.00

ff

VAR290XX	hay	542	94.35	176.78	0.00	1500.00
VAR294XX	alf	542	94.62	236.50	0.00	3000.00
VAR298XX	prot	542	0.66	7.03	0.00	150.00
VAR302XX	conc	542	0.26	1.88	0.00	24.00
VAR306XX	corn	542	5.90	28.58	0.00	220.00
VAR310XX	crop	542	31.23	121.76	0.00	1300.00
VAR314XX	grn	542	125.53	938.31	0.00	15000.00
VAR319XX	othr	542	25.26	311.67	0.00	5600.00

opsize=2						
VAR294XX	alf	176	194.85	403.80	0.00	2500.00
VAR298XX	prot	176	2.67	15.04	0.00	150.00
VAR302XX	conc	176	0.94	8. 37	0.00	100.00
VAR306XX	corn	176	5.91	32.78	0.00	300.00
VAR310XX	crop	176	118.18	409.11	0.00	3000.00
VAR314XX	grn	176	557.10	2678.54	0.00	20000.00
VAR319XX	othr	176	42.95	461.11	0.00	6000.00
\cdots - opsize=3						
VAR290XX	hay	15	2314.07	7680.80	0.00	30000.00
VAR294XX	alf	15	300.07	703.88	0.00	2700.00
VAR298XX	prot	15	6.73	25.80	0.00	100.00
VAR302XX	conc	15	0.00	0.00	0.00	0.00
VAR306XX	corn	15	53.33	180.74	0.00	700.00
VAR310XX	crop	15	453.33	1266.53	0.00	4500.00
VAR314XX	grn	15	2413.33	9020.13	0.00	35000.00
VAR319XX	othr	15	0.00	0.00	0.00	0.00

ff

VAR291XX	hay	733	40.69	129.68	0.00	2000	
VAR295XX	alf	733	57.26	127.29	0.00	1200	
VAR299XX	prot	733	18.32	136.19	0.00	2600	
VAR303XX	conc	733	5.52	24.10	0.00	300	
VAR307XX	corn	733	6.82	96.81	0.00	2500	
VAR311XX	crop	733	12.36	112.15	0.00	2100	
VAR315XX	grn	733	1566.54	36956.42	0.00	1000000	00
VAR320XX	othr	733	6.04	65.23	0.00	1200	

ff
Off Farm Sources By Operation Size

VAR291XX	hay	542	30.27	$=69.52$	0.00	700.00
VAR295 XX	alf	542	38.51	74.80	0.00	500.00
VAR299XX	prot	542	16.16	155.68	0.00	2600.00
VAR303XX	conc	542	3.05	13.46	0.00	100.00
VAR307XX	corn	542	8.12	111.77	0.00	2500.00
VAR311 XX	crop	542	5.18	49.43	0.00	640.00
VAR315 XX	grn	542	170.41	1307.73	0.00	24000.00
VAR320XX	othr	542	4.39	50.95	0.00	1000.00
			75:	$\mathrm{e}=2$		
VAR291XX	hay	176	75.41	231.76	0.00	2000.00
VAR295XX	alf	176	106.26	201.24	0.00	1200.00
VAR299XX	prot	176	21.38	37.27	0.00	200.00
VAR303XX	conc	176	11. 28	35.89	0.00	300.00
VAR307XX	corn	176	3.41	23.66	0.00	200.00
VAR311 XX	crop	176	28.73	191.20	0.00	2100.00
VAR315 XX	grn	176	317.68	1834.68	0.00	20000.00
VAR320XX	othr	176	11.65	98.64	0.00	1200.00
			--.	$\mathrm{e}=3$		
VAR291XX	hay	15	10.00	28.03	0.00	100.00
VAR295XX	alf	15	160.00	264.03	0.00	900.00
VAR299XX	prot	15	60.60	116.87	0.00	400.00
VAR303XX	conc	15	27.00	78.19	0.00	300.00
VAR307XX	corn	15	0.00	0.00	0.00	0.00
VAR311 XX	crop	15	80.00	309.84	0.00	1200.00
VAR315 XX	grn	15	66666.67	258198.89	0.00	1000000.00
VAR320XX	othr	15	0.00	0.00	0.00	0.00

ff

ff
Start Feeding By Operation Size

VAR292XX	hay	380	9.00	4. 15	1.00	12.00
VAR296XX	alf	346	8.48	4.29	1.00	12.00
VAR300XX	prot	210	8. 15	4.46	1.00	12.00
VAR304XX	conc	92	7.95	4.38	1.00	12.00
VAR308XX	corn	34	10.74	1.88	1.00	12.00
VAR312XX	crop	53	9.42	2. 59	1.00	12.00
VAR316XX	grn	90	8.42	4.05	1.00	12.00
VAR321XX	othr	29	7.66	4. 31	1.00	12.00
			-			
VAR292XX	hay	139	8.99	4. 36	1.00	12.00
VAR296XX	alf	106	7. 51	4.77	1.00	12.00

VAR300XX	prot	82	8.07	4.67	1.00	12.00
VAR304XX	conc	34	8.09	4.45	1.00	12.00
VAR308XX	corn	11	10.18	3.09	1.00	12.00
VAR312XX	crop	33	9.39	2.74	1.00	12.00
VAR316XX	grn	27	9.30	3. 54	1.00	12.00
VAR321XX	othr	12	6.75	4.33	1.00	12.00
opsize=3						
VAR296XX	hay	12	8.27 5.92	4.52 4.93	1.00 1.00	12.00 12.00
VAR300XX	prot	8	6.75	4.86	1.00	12.00
VAR304XX	conc	3	11.33	0.58	11.00	12.00
VAR308XX	corn	2	5.50	6. 36	1.00	10.00
VAR312XX	crop	3	10. 33	0.58	10.00	11.00
VAR316XX	grn	3	6.33	4.73	1.00	10.00
VAR321XX	othr	0				
fffffffff						
VAR293XX	hay	532	4.84	1.48	1.00	12.00
VAR297XX	alf	460	4.88	1.48	1.00	12.00
VAR301XX	prot	293	5.68	2. 98	1.00	12.00
VAR305XX	conc	131	6.16	3. 33	1.00	12.00
VAR309XX	corn	46	4.09	3. 35	1.00	12.00
VAR313XX	crop	87	6.36	4. 21	1.00	12.00
VAR317XX	grn	120	5.83	3.17	1.00	12.00
VAR322XX	othr	39	5.87	3.04	2.00	12.00
Stop Feeding By Operation Size						
VAR293XX	hay	381	4.88	1. 56	1.00	12.00
VAR297XX	alf	342	4.97	1. 53	1.00	12.00
VAR301XX	prot	204	5.92	3. 11	1.00	12.00
VAR305XX	conc	93	6. 33	3. 37	1.00	12.00
VAR309XX	corn	33	3.91	2. 91	1.00	12.00
VAR313XX	crop	51	5.76	3. 94	1.00	12.00
VAR317XX	grn	90	5.81	3. 26	1.00	12.00
VAR322XX	othr	28	6.07	3.39	2.00	12.00
opsize=2						
VAR293XX	hay	140	4.77	1. 27	2.00	12.00
VAR297XX	alf	106	4.69	1. 35	1.00	12.00
VAR $301 \times X$	prot	81	5.23	2. 64	2.00	12.00
VAR305XX	conc	35	6.00	3. 19	1.00	12.00
VAR309XX	corn	11	4.73	4.73	1.00	12.00
VAR313XX	crop	33	7.70	4.36	1.00	12.00
VAR317XX	grn	27	5.70	2.84	3.00	12.00
VAR322XX	othr	11	5.36	1. 91	4.00	10.00
\cdots opsize=3						
VAR293XX	hay	11	4.55	1.04	2.00	6.00
VAR297XX	alf	12	4. 25	0.87	2.00	5.00
VAR301XX	prot	8	4.00	1. 31	1.00	5.00
VAR305XX	conc	3	2.67	2.08	1.00	5.00
VAR309XX	corn	2	3.50	2. 12	2.00	5.00
VAR313XX	crop	3	1.67	0.58	1.00	2. 00
VAR317XX	grn	3	7.67	3.79	5.00	12.00
VAR322XX	othr	0			.	

Question 9

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- SAS Means procedure.

Output:

Typical Number Owned All Ranches						
VAR330XX	bred cow	814	220.53	364.78	20.00	6891.00
VAR 333 X	str calf	814	78.97	215.15	0.00	3000.00
VAR336XX	hfr calf	814	76.71	202.11	0.00	4000.00
VAR339XX	repl hfr	814	31.20	70.94	0.00	1000.00
VAR342XX	ret yrlg	814	18.82	93.49	0.00	1055.00

VAR332XX	bred cow	814	4.89	2. 22	0.00	12.00
VAR335XX	str calf	814	1.56	2. 52	0.00	12.00
VAR338XX	hfr calf	814	1.97	2. 75	0.00	12.00
VAR341XX	repl hfr	814	3.42	3. 14	0.00	12.00
VAR $344 \times$	ret yrlg	814	0.77	2.10	0.00	12.00
VAR347XX	fat cow	814	0.11	0.80	0.00	12.00
VAR $350 \times X$	bull	814	3.85	2.95	0.00	12.00
VAR $353 \times X$	horse	814	3.02	3.46	0.00	12.00
VAR 357 XX	other	814	0.37	1.75	0.00	12.00
fffffffff		$f f f_{a} f$	$f f f f f$ Month	$f_{B V} f f f_{0} f$	$f f f f$	fffff
			- op			
VAR $332 \times X$	bred cow	610	5.06	2. 30	0.00	12.00
VAR 35 XX	str calf	610	1. 51	2.44	0.00	12.00
VAR $338 \times$	hfr calf	610	1.98	2.78	0.00	12.00
VAR341XX	repl hfr	610	3.38	3.20	0.00	12.00
VAR $344 \times$ X	ret yrlg	610	0.65	1.93	0.00	12.00
VAR347XX	fat cow	610	0.11	0.75	0.00	9.00
VAR $350 \times X$	bull	610	3.82	3.07	0.00	12.00
VAR $353 \times X$	horse	610	2.92	3.50	0.00	12.00
VAR 357 XX	other	610	0.39	1.80	0.00	12.00
			- Op			
VAR $332 \times X$	bred cow	189	4.44	1.87	0.00	10.00
VAR $35 \times \mathrm{X}$	str calf	189	1.65	2.64	0.00	12.00
VAR338XX	hfr calf	189	1.97	2.62	0.00	12.00
VAR341XX	repl hfr	189	3.50	2.96	0.00	12.00
VAR344XX	ret yrlg	189	1. 13	2. 56	0.00	12.00
VAR347XX	fat cow	189	0.12	0.96	0.00	12.00
VAR350XX	bull	189	3.93	2. 53	0.00	12.00
VAR $353 \times X$	horse	189	3. 24	3.29	0.00	12.00
VAR 357 XX	other	189	0.35	1.62	0.00	12.00
			- op			
VAR $332 \times X$	bred cow	15	3.73	2. 19	0.00	7.00
VAR335XX	str calf	15	2. 20	3.71	0.00	12.00
VAR338XX	hfr calf	15	1.67	3. 37	0.00	12.00
VAR341XX	repl hfr	15	4.33	3.11	0.00	12.00
VAR344XX	ret yrlg	15	0.87	1.88	0.00	6.00
VAR347XX	fat cow	15	0.00	0.00	0.00	0.00
VAR $350 \times X$	bull	15	4.13	3.16	0.00	12.00
VAR $353 \times X$	horse	15	4.07	3.95	0.00	12.00
VAR357XX	other	15	0.20	0.77	0.00	3.00

Question 10

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded percentages that did not sum to 100%.
- Aggregated variable for all non-traditional market methods.
- Created variables to calculate frequencies for non-traditional market methods.
- SAS Means procedure.

Code:

```
*excludes respondents with responses that did not sum to 100;
var371x1 = var360xx + var361xx + var362xx + var363xx + var364xx +
var365xx + var366xx +
var367xx + var368xx + var370xx + var371xx;
if var371x1 ne 100 then delete;
*Sum of non-traditional market methods;
var371x2 = var361xx + var363xx + var365xx + var366xx + var367xx +
var368xx + var371xx;
```

```
*to calculate frequency of non-traditional market;
if var361xx gt 0 then var361x1 = 1;
if var363xx gt 0 then var363x1 = 1;
if var365xx gt 0 then var365x1 = 1;
if var366xx gt 0 then var366x1 = 1;
if var367xx gt 0 then var367x1 = 1;
if var368xx gt 0 then var368x1 = 1;
if var371xx gt 0 then var371x3 = 1;
```


Output:

fff
\qquad

VAR140XX	Cow/Cal f	603	83.53	29.76	0.00	100.00
VAR141XX	Backgnd	603	1.65	10.12	0.00	100.00
VAR142XX	Feedlot	603	1. 38	9.65	0.00	100.00
VAR143XX	Sheep	603	1.41	7.66	0.00	60.00
VAR144XX	Cow/ Yrlg	603	5.96	20.13	0.00	100.00
VAR145XX	$\mathrm{Cl} u \mathrm{bliv}$	603	0.35	4.38	0.00	100.00
VAR146XX	Repl Heif	603	1.27	5.74	0.00	60.00
VAR147XX	Horses	603	0.83	4.74	0.00	60.00
VAR148XX	Buffalo	603	0.00	0.00	0.00	0.00
VAR149XX	GOATS	603	0.02	0.29	0.00	5.00
VAR150XX	Dairy	603	0.06	1. 24	0.00	30.00
VAR151XX	Hogs	603	0.23	3. 39	0.00	75.00
VAR153XX	Ot her	603	3. 31	14.17	0.00	100.00
var 153×2	Sum Non-Beef	603	2.55	9.63	0.00	75.00
VAR140XX	Cow/ Calf	185	7 OPSO	35.60	0.00	100.00
VAR141XX	Backgnd	185	1.89	10.67	0.00	100.00
VAR142XX	Feedlot	185	2.16	10.93	0.00	100.00
VAR143XX	Sheep	185	2.28	10.51	0.00	76.00
VAR144XX	Cow/ Yrlg	185	13.94	30.55	0.00	100.00
VAR145XX	Club Clv	185	0.01	0.15	0.00	2.00
VAR146XX	Repl Heif	185	1.88	8.36	0.00	90.00
VAR147XX	Horses	185	0.82	4.62	0.00	50.00
VAR148XX	Buffalo	185	0.00	0.00	0.00	0.00
VAR149XX	GOATS	185	0.01	0.15	0.00	2.00
VAR150XX	Dairy	185	0.01	0.15	0.00	2.00
VAR151XX	Hogs	185	0.00	0.00	0.00	0.00
VAR153XX	Ot her	185	0.95	5. 65	0.00	60.00
var 153×2	Sum Non-Beef	185	3.12	11.48	0.00	76.00
VAR140XX	Cow/Cal f	15	$81.0 p s i$	26.69		
VAR141XX	Backgnd	15	2.00	7.75	0.00	30.00
VAR142XX	Feedlot	15	0.00	0.00	0.00	0.00
VAR143XX	Sheep	15	3.00	11.62	0.00	45.00
VAR144XX	Cow/ Yrlg	15	9.60	26.11	0.00	99.00
VAR145XX	Club Clv	15	0.07	0.26	0.00	1. 00
VAR146XX	Repl Heif	15	1.40	3.50	0.00	10.00
VAR147XX	Horses	15	2. 13	6.46	0.00	25.00
VAR148XX	Buffalo	15	0.00	0.00	0.00	0.00
VAR149XX	GOATS	15	0.00	0.00	0.00	0.00
VAR150XX	Dairy	15	0.00	0.00	0.00	0.00
VAR151XX	Hogs	15	0.00	0.00	0.00	0.00
VAR153XX	Ot her	15	0.33	1.29	0.00	5.00
var 153×2	Sum Non-Beef	15	5.13	12.77	0.00	45.00

fff

Question 11

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Required variables for months to be a number between 1 and 12.
- Eliminated cattle weights below 100 lbs for calves and below 500lbs for adult cattle classes.
- SAS Means procedure.

Code:

```
*forces months to a number between 1 and 12;
if var381xx = 0 then var381xx = .;
*sets min cattle weights at 500lbs for adult cattle;
*sets minimum cattle weights at 100lbs for calves;
if var380xx < 100 then var380xx =.;
if var382xx < 100 then var382xx = .;
if var383xx = 0 then var383xx = .;
if var384xx < 100 then var384xx = .;
if var385xx = 0 then var385xx = .;
if var386xx < 100 then var386xx = .;
if var387xx = 0 then var387xx = .;
```

```
if var388xx < 500 then var388xx = .;
if var389xx = 0 then var389xx = .;
if var390xx < 500 then var390xx = .;
if var391xx = 0 then var391xx = .;
if var392xx < 500 then var392xx = .;
if var393xx = 0 then var393xx = .;
if var394xx < 500 then var394xx = .;
if var395xx = 0 then var395xx = .;
if var396xx < 500 then var396xx = .;
if var397xx = 0 then var397xx = .;
if var399xx = 0 then var399xx = .;
if var400xx = 0 then var400xx = .;
```


Output:

Va	a		Mean	Dev	mu	m	
VAR380XX	str calf	715	581.64	94.06	320.00	1250.00	
VAR382XX	hfr calf	685	546.94	87.56	300.00	1150.00	
VAR384XX	bkgd calf	52	715.77	172.38	400.00	1300.00	
VAR386XX	\| g yr	ng	97	898.39	158.07	300.00	1400.00
VAR388XX	finishd	47	1227.34	119.00	900.00	1500.00	
VAR390XX	repl hfr	208	845.16	177.41	500.00	1200.00	
VAR392XX	brd cow	300	1198.83	118.57	800.00	1800.00	
VAR394XX	fat cow	85	1258.75	156.38	950.00	1700.00	
VAR396XX	bull	376	1799.06	260.19	950.00	3000.00	
VAR399XX	other	55	1063.47	409.67	12.00	2000.00	
ff							
		S	le Mont	Ranches			
VAR381XX	str calf	685	9.30	2.87	1.00	12.00	
VAR383XX	hfr calf	639	9. 05	3. 14	1.00	12.00	
VAR385XX	bkgd calf	44	5. 14	4.10	1.00	12.00	
VAR387XX	$1 \mathrm{~g} y \mathrm{rlng}$	84	8.20	2.40	1.00	12.00	
VAR389XX	finishd	39	6. 26	2.82	1. 00	12.00	
VAR391XX	repl hfr	63	7.27	3.99	1.00	12.00	
VAR393XX	brd cow	116	8.32	3.81	1.00	12.00	
VAR395XX	fat cow	76	7.95	3. 39	1.00	12.00	
VAR397XX	bull	206	8.17	3. 14	1.00	12.00	
VAR400XX	other	51	7.88	3.36	1.00	12.00	

VAR382XX	hfr calf	520	554.98	91.80	300.00	1150.00
VAR384XX	bkgd calf	37	713.92	164.01	450.00	1300.00
VAR386XX	$1 \mathrm{~g} y \mathrm{l}$ Ing	54	910.93	194.55	300.00	1400.00
VAR388XX	finishd	32	1215.78	139.95	900.00	1500.00
VAR390XX	repl hfr	146	824.42	184.98	500.00	1200.00
VAR392XX	brd cow	214	1200. 18	131.25	800.00	1800.00
VAR394XX	fat cow	64	1261.31	166.53	950.00	1700.00
VAR396XX	bull	262	1795.78	277.41	950.00	3000.00
VAR399XX	other	39	1007. 21	399.64	12.00	1500.00
VAR380XX	str calf	161	555.30	70.82	350.00	850.00
VAR382XX	hfr calf	151	524.19	68.25	350.00	750.00
VAR384XX	bkgd calf	12	658.75	115.74	400.00	775.00
VAR386XX	1 gyrlng	37	886.59	96.05	600.00	1050.00
VAR388XX	finishd	13	1252.31	46.40	1150.00	1300.00
VAR390XX	repl hfr	55	898.22	146.23	550.00	1200.00
VAR392XX	brd cow	77	1196.56	80.19	900.00	1400.00
VAR394XX	fat cow	19	1258.95	127. 23	1050.00	1600.00
VAR396XX	bull	102	1807.84	213.38	1200.00	2200.00
VAR399XX	other	16	1200.63	413.87	110.00	2000.00
VAR380XX	str calf	14	531.64	35.28	490.00	618.00
VAR382XX	hfr calf	14	494.00	39. 97	425.00	565.00
VAR384XX	bkgd calf	3	966.67	292.97	750.00	1300.00
VAR386XX	$1 \mathrm{~g} y \mathrm{r}$ Ing	6	858.33	86.12	750.00	1000.00
VAR388×X	finishd	2	1250.00	70.71	1200.00	1300.00
VAR390XX	repl hfr	7	860.71	173.12	500.00	1000.00
VAR392×X	brd cow	9	1186.11	74.07	1100.00	1300.00
VAR394XX	fat cow	2	1175.00	35.36	1150.00	1200.00
VAR396XX	bull	12	1795.83	250.87	1300.00	2200.00
VAR399XX	other	0				

fff Sale Month by Operation Size							
			- ops				
VAR381XX	str calf	519	9. 23	2. 92	1.00	12.00	
VAR383XX	hfr calf	486	8. 94	3.19	1.00	12.00	
VAR 385 XX	bkgd calf	31	5.35	4.20	1. 00	12.00	
VAR387XX	\| $\mathrm{g} y \mathrm{rlng}$	44	7. 84	2.70	1.00	12.00	
VAR389XX	finishd	25	6. 36	3.01	1.00	12.00	
VAR391XX	repl hfr	37	6.97	4. 09	1. 00	12.00	
VAR393XX	brd cow	73	8.85	3. 52	1. 00	12.00	
VAR395XX	fat cow	54	7. 85	3.48	1.00	12.00	
VAR397XX	bull	140	8.06	3. 23	1.00	12.00	
VAR400XX	other	36	7.64	3. 33	1.00	12.00	
VAR381XX	str calf	155	- 9.49	2. 71	1.00	12.00	
VAR383XX	hfr calf	144	9. 34	2.92	1.00	12.00	
VAR385XX	bkgd calf	11	4.91	4. 28	1. 00	12.00	
VAR387XX	\| g yr	ng	34	8.68	1.75	3.00	12.00
VAR389XX	finishd	13	6.00	2. 61	3.00	12.00	
VAR391XX	repl hfr	23	8.00	3.85	1. 00	12.00	
VAR393XX	brd cow	41	7.46	4. 12	1.00	12.00	
VAR395XX	fat cow	20	7. 90	3.26	1.00	12.00	
VAR397XX	bulı	60	8.42	2.86	1. 00	12.00	
VAR400XX	other	15	8.47	3.48	1. 00	12.00	
			$\cdots \mathrm{Ops}$				
VAR381XX	str calf	11	10.09	3.08	1.00	12.00	
VAR 383 XX	hfr calf	9	9.89	3.41	1.00	12.00	
VAR385XX	bkgd calf	2	3.00	0.00	3.00	3.00	
VAR387XX		6	8.17	3. 13	2. 00	10.00	
VAR389XX	finishd	1	7.00		7.00	7.00	
VAR391XX	repl hfr	3	5. 33	4.04	3.00	10.00	
VAR393XX	brd cow	2	6. 50	6.36	2.00	11.00	
VAR395XX	fat cow	2	11.00	1. 41	10.00	12.00	
VAR397XX	bull	6	8.17	4.07	3.00	12.00	
VAR400XX	other	0		.	.	.	

Question 12

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded incorrect percentage responses (i.e. answers that did not sum to 100).
- SAS Means procedure.

Code:

```
*excludes respondents with responses that did not sum to 100;
var416x1 = var410xx + var411xx + var412xx + var414xx + var415xx +
var416xx;
if var416x1 ne 100 then delete;
Output:
```

able	e	N	Mean	Dev	mum	mum
ffffff	fffffff	$f f f f$	ffff	fffff	$f f f f$	feff
	ffffffff		e Met	Ranc		
VAR410XX	sale brn	587	42.90	45.33	0.00	100.00
VAR412XX	video	587	2.19	12.50	0.00	100.00
VAR415 XX	pvt	587	50.21	46.01	0.00	100.00
VAR416XX	fwd cnt	587	0.63	7.47	0.00	100.00
VAR411XX	web	587	0.04	0.85	0.00	20.00
VAR414XX	other	587	4.02	19.39	0.00	100.00
ffffffff	fffffff	J	fff	ffff	f	fffff
			Met hod	ration		
VAR410XX	sale brn	432	42. 22	45.66	0.00	100.00
VAR412XX	video	432	1.74	11. 30	0.00	100.00
VAR415 X	pvt	432	52.13	46.31	0.00	100.00
VAR416XX	fwd cnt	432	0.74	8.37	0.00	100.00

VAR411XX	we b	432	0.06	0.99	0.00	20.00
VAR414XX	other	432	3.11	17.16	0.00	100.00
			- 0			
VAR410 XX	sale brn	145	46.17	44.45	0.00	100.00
VAR412XX	video	145	3.34	15.36	0.00	100.00
VAR415 XX	pvt	145	44.52	44.88	0.00	100.00
VAR416XX	fwd cnt	145	0.34	4.15	0.00	50.00
VAR411XX	web	145	0.00	0.00	0.00	0.00
VAR414XX	other	145	5.62	22.69	0.00	100.00
			$\cdots 0$			
VAR410XX	sale brn	10	25.00	42.49	0.00	100.00
VAR412XX	video	10	5.00	15.81	0.00	50.00
VAR415 XX	pvt	10	50.00	47.14	0.00	100.00
VAR416XX	fwd cnt	10	0.00	0.00	0.00	0.00
VAR411XX	web	10	0.00	0.00	0.00	0.00
VAR414XX	other	10	20.00	42.16	0.00	100.00

Part B: Other Production and Marketing Practices

Question 13

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Eliminated answers that were not either "yes" or "no".
- SAS Means procedure.

Code:

```
*forces either a yes or no answer;
var421x1 = var420xx + var421xx;
if var421x1 ne 1 then delete;
Output:
```


Question 14

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who answered "No" to question 13.
- SAS Means procedure.

Code:

```
*Only respondents who answered "yes" to Q13";
```

if var420xx ne 1 then delete;

Output:

Question 15

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who answered "Yes" to question 13.
- Eliminated answers that were not either "yes" or "no".
- SAS Means procedure.

Code:

```
*Only respondents who answered "no" to Q13";
if var421xx ne 1 then delete;
*forces either a yes or no answer;
var431x1 = var430xx + var431xx;
if var431x1 ne 1 then delete;
Output:
```


opsize=1						
VAR431XX	NO	551	0.70	0.46	0.00	1.00
var 431×1		551	1.00	0.00	1.00	1.00
opsize=2						
VAR430XX	YES	146	0.34	0.47	0.00	1.00
VAR431XX	NO	146	0.66	0.47	0.00	1.00
var 431×1		146	1.00	0.00	1.00	1.00
opsize=3						
VAR430XX	YES	11	0.45	0.52	0.00	1.00
VAR431XX	NO	11	0.55	0.52	0.00	1.00
var 431×1		11	1.00	0.00	1.00	1.00

Question 16

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who answered "No" to question 15.
- SAS Means procedure.

Code:
*Only respondents who answered "yes" to Q15;
if var430xx ne 1 then delete;
Output:

VAR440XX	\| n St	167	0 psi 0.67	0.47	0.00	1.00
VAR442XX	Mls In St	167	69.79	113.53	0.00	1000.00
VAR441XX	Out St	167	0.31	0.46	0.00	1. 00
VAR443XX	MIs Out St	167	118.41	264.93	0.00	2000.00
VAR440XX	In St	52	- 0.5 psi	0.50	0.00	1.00
VAR442XX	Mls In St	52	87.62	173.16	0.00	1000.00
VAR441XX	Out St	52	0.46	0.50	0.00	1.00
VAR443XX	MIs Out St	52	176.46	253.01	0.00	1000.00
VAR440XX	1 n St	5	- opsi	0.55	0.00	1.00
VAR442XX	Mls In St	5	50.00	86.60	0.00	200.00
VAR441XX	Out St	5	0.60	0.55	0.00	1.00
VAR443XX	MIs Out St	5	220.00	228.04	0.00	500.00

Question 17

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- SAS Means procedure.

Output:

Question 18

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Eliminated respondents who gave no positive answer to any practice.
- Limited answers to one response per item.
- SAS Means procedure.

Code:

```
*eliminate respondents who gave no positive answer to any practice;
var495x1 = var460xx + ... var495xx;
if var495x1 = 0 then delete;
*eliminates incorrect responses (other than 0 or 1) for specific
variables;
if var513xx gt 1 then delete;
*eliminates multiple responses (limits row sums to 1);
var463x1 = var460xx + var461xx + var462xx + var463xx;
if var463x1 gt 1 then delete;
var495x2 = var492xx + var493xx + var494xx + var495xx;
if var495x2 gt 1 then delete;
```

Output:

Variable	el	N	Mean	Dev	mum	x i mum
fffffffff	fffffff	ffff	$f \mathrm{ff}$	ffff	ffff	f
			rent	Al ${ }^{\text {R }}$		
VAR460XX	organic	702	0.06	0.23	0.00	1.00
VAR464XX	natural	702	0.30	0.46	0.00	1.00
VAR468XX	direct	702	0.14	0.35	0.00	1.00
VAR472XX	co-op	702	0.04	0.20	0.00	1.00
VAR476XX	nat ID	702	0.05	0.22	0.00	1.00
VAR480XX	dif clv	702	0.09	0.28	0.00	1.00
VAR484XX	add ent	702	0.14	0.35	0.00	1.00
VAR488XX	sell rec	702	0. 24	0.43	0.00	1.00
VAR492XX	work	702	0.44	0.50	0.00	1.00
VAR513XX	other	702	0.00	0.04	0.00	1.00
fffffffff	ffffffff	$f f f$	$f f_{f} f f_{v} f$	fffff Opera	$f f f f$	ffff
			- op			
VAR460XX	organic	522	0.06	0.24	0.00	1.00
VAR464XX	natural	522	0. 32	0.47	0.00	1.00
VAR468XX	direct	522	0.14	0.35	0.00	1.00
VAR472XX	co-op	522	0.03	0.18	0.00	1.00
VAR476XX	nat I D	522	0.05	0.23	0.00	1.00
VAR480XX	dif clv	522	0.08	0.28	0.00	1.00
VAR484XX	add ent	522	0.13	0.33	0.00	1.00
VAR488XX	sell rec	522	0.19	0.39	0.00	1.00

VAR492XX	wor k	522	0.52	0.50	0.00	1.00
VAR513XX	other	522	0.00	0.04	0.00	1.00
VAR460XX	organic	168	-0ps	0. 20	0.00	1. 00
VAR464XX	organic	168 168	0.24	0.20 0.43	0.00	1.00
VAR468XX	direct	168	0.14	0.34	0.00	1.00
VAR472XX	co-op	168	0.05	0.23	0.00	1.00
VAR476XX	nat \| D	168	0.04	0.20	0.00	1.00
VAR480XX	dif clv	168	0.11	0.31	0.00	1.00
VAR484XX	add ent	168	0.17	0.38	0.00	1.00
VAR488XX	sell rec	168	0.38	0.49	0.00	1.00
VAR492XX	work	168	0.22	0.42	0.00	1.00
VAR513XX	other	168	0.00	0.00	0.00	0.00
			- ops			
VAR460XX	organic	12	0.17	0.39	0.00	1.00
VAR464XX	natural	12	0.17	0.39	0.00	1.00
VAR468XX	direct	12	0.25	0.45	0.00	1.00
VAR 472 XX	co-op	12	0.17	0.39	0.00	1.00
VAR476XX	nat ${ }^{\text {d }}$	12	0.17	0.39	0.00	1.00
VAR480XX	dif clv	12	0.00	0.00	0.00	0.00
VAR484XX	add ent	12	0.42	0.51	0.00	1.00
VAR488XX	sell rec	12	0.58	0.51	0.00	1.00
VAR492XX	work	12	0.17	0.39	0.00	1.00
VAR513XX	other	12	0.00	0.00	0.00	0.00
		Pr	e Con	All Ra		
VAR461XX	organic	702	0.31	0.46	0.00	1.00
VAR465XX	natural	702	0.30	0.46	0.00	1.00
VAR469XX	direct	702	0.26	0.44	0.00	1.00
VAR473XX	co-op	702	0.29	0.46	0.00	1.00
VAR477XX	nat I D	702	0.40	0.49	0.00	1.00
VAR481XX	dif clv	702	0.27	0.45	0.00	1.00
VAR485XX	add Ent	702	0.29	0.45	0.00	1.00
VAR489XX	sell rec	702	0.20	0.40	0.00	1.00
VAR493XX	work	702	0.14	0.35	0.00	1.00
VAR514XX	other	701	0.00	0.07	0.00	1.00

VAR461XX	organic	522	0.32	0.47	0.00	1.00
VAR465 XX	natural	522	0.29	0.46	0.00	1.00
VAR469XX	direct	522	0.27	0.44	0.00	1.00
VAR473XX	co-op	522	0.28	0.45	0.00	1.00
VAR477XX	nat I D	522	0.38	0.48	0.00	1.00
VAR481XX	dif clv	522	0.28	0.45	0.00	1.00
VAR485XX	add Ent	522	0.29	0.45	0.00	1.00
VAR489XX	sell rec	522	0.20	0.40	0.00	1.00
VAR493XX	work	522	0.14	0.34	0.00	1.00
VAR514XX	other	521	0.01	0.08	0.00	1.00
			- ops			
VAR461 XX	organic	168	0.31	0.46	0.00	1.00
VAR465 XX	natural	168	0.32	0.47	0.00	1.00
VAR469 XX	direct	168	0.24	0.43	0.00	1.00
VAR473XX	co.op	168	0.35	0.48	0.00	1.00
VAR477XX	nat ${ }^{\text {d }}$	168	0.48	0.50	0.00	1.00
VAR481XX	dif clv	168	0.25	0.43	0.00	1.00
VAR485XX	add Ent	168	0.29	0.45	0.00	1.00
VAR489XX	sell rec	168	0.23	0.42	0.00	1.00
VAR493XX	work	168	0.17	0.37	0.00	1. 00
VAR514XX	other	168	0.00	0.00	0.00	0.00
VAR461XX	organic	12	- 0 0ps	0.45	0.00	1.00
VAR465 XX	natural	12	0.50	0. 52	0.00	1.00
VAR469XX	direct	12	0.33	0.49	0.00	1.00
VAR473XX	co-op	12	0.25	0.45	0.00	1.00
VAR477XX	nat ID	12	0.42	0. 51	0.00	1.00
VAR481XX	dif clv	12	0.17	0.39	0.00	1.00
VAR485XX	add Ent	12	0.33	0.49	0.00	1.00
VAR489XX	sell rec	12	0.17	0.39	0.00	1.00
VAR493XX	work	12	0.17	0.39	0.00	1.00
VAR514XX	other	12	0.00	0.00	0.00	0.00

fff

VAR462 XX	organic	Pract 702	0.32	0.47	0.00	1.00
VAR466XX	natural	702	0.23	0.42	0.00	1.00
VAR470XX	direct	702	0.31	0.46	0.00	1.00
VAR474XX	cosop	702	0.36	0.48	0.00	1.00
VAR478XX	nat I D	702	0.27	0.44	0.00	1.00
VAR482XX	dif clv	702	0.25	0.43	0.00	1.00
VAR486XX	add Ent	702	0.24	0.43	0.00	1.00
VAR490XX	sell rec	702	0.20	0.40	0.00	1.00

VAR491XX	sell rec	12	0.08	0.29	0.00	1.00
VAR495XX	work	12	0.42	0.51	0.00	1.00
VAR516XX	other	12	0.00	0.00	0.00	0.00

Note: Results for the last four items listed in the survey instrument on Question 18 are reported under Part C, Sagebrush management, Table [Q18-Extra].

Question 19

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
" Recoded responses of " 0 " as missing (question was coded as a five point likert scale from 1 to 5).
- SAS Means procedure.
- SPSS frequencies procedure to calculate median and mode.

Code:

```
*eliminate respondents did not respond to particular items;
if var517xx = 0 then var517xx = .;
if var518xx = 0 then var518xx = .;
if var519xx = 0 then var519xx = .;
if var520xx = 0 then var520xx = .;
if var521xx = 0 then var521xx = .;
if var522xx = 0 then var522xx = .;
if var523xx = 0 then var523xx = .;
if var524xx = 0 then var524xx = .;
if var525xx = 0 then var525xx = .;
if var526xx = 0 then var526xx = .;
if var527xx = 0 then var527xx = .;
if var527xx = 0 then var527xx = .;
if var528xx = 0 then var528xx = .;
if var529xx = 0 then var529xx = .;
```

Output:

VAR525XX	Markt Asst	579	3.03	1. 21	1.00	5.00
VAR526XX	Ret Own	567	2.98	1. 20	1.00	5.00
VAR527XX	Alt Prod	565	3.00	1. 14	1.00	5.00
VAR528XX	Subs Elim	572	3.40	1. 17	1.00	5.00
VAR529XX	Fed Graz	573	3.26	1. 31	1.00	5.00
VAR517XX	Mand ID	182	- 2.97	1.40	1.00	00
VAR518XX	Rst Vacc	184	2. 45	1.27	1.00	5.00
VARS19 X ${ }^{\text {d }}$	Org Prem	183	3.63	1. 07	1.00	5. 00
VAR520XX	DrghtPlan	182	4.15	1. 05	1.00	5.00
VAR521XX	BSE	183	3.61	1. 27	1.00	5.00
VAR522XX	Bruc	183	3.62	1. 25	1.00	5.00
VAR523XX	Alt Ent	183	2.99	1. 34	1.00	5.00
VAR524XX	Markt Alt	182	3.23	1. 19	1.00	5.00
VAR525 X	Markt Asst	182	2.93	1. 26	1.00	5.00
VAR526XX	Ret Own	175	2.86	1. 25	1.00	5.00
VAR527XX	Alt Prod	174	2.87	1. 21	1.00	5.00
VAR528XX	Subs Elim	177	3.19	1.28	1.00	5.00
VAR529XX	Fed Graz	180	3.13	1.33	1.00	5.00
Varsildx	Mand ID	15	3.0ps	1. 51	1.00	5.00
VAR518XX	Rst Vacc	15	2.47	1.46	1.00	5. 00
VAR519XX	Org Prem	15	3.40	1. 35	1.00	5.00
VAR520XX	DrghtPlan	15	4.07	1.03	2.00	5.00
VAR521XX	BSE	15	2.40	1. 35	1.00	5.00
VAR522XX	Bruc	15	3.20	1. 52	1.00	5.00
VAR523XX	Alt Ent	15	3.87	1. 36	1.00	5.00
VAR524XX	Markt Alt	15	3.47	1.36	1. 00	5.00
VAR525XX	Markt Asst	15	3.20	1. 21	1.00	5.00
VAR526XX	Ret Own	15	3.40	1. 50	1.00	5.00
VAR527XX	Alt Prod	15	3. 33	1. 23	1.00	5. 00
VAR528XX	Subs Elim	15	3.80	1. 32	2.00	5.00
VAR529XX	Fed Graz	15	3.27	1.75	1.00	5.00

All Ranches

Statistics

		Mandate ID	Restrict Vacc	Organic Prem	Drought Plan	BSE	Brucellosis
N	Valid	780	789	785	783	794	791
	Missing	34	25	29	31	20	23
Mean		3.05	2.52	3.65	4.27	3.75	3.75
Median	3.00	3.00	4.00	5.00	4.00	4.00	
Mode	3	1	4	5	5	5	

Statistics

		Alt Ent	Market Alt	Market Assist	Ret Own	Alt Prod	Subsidy Elim	Fed Grazing
N	Valid	774	775	776	757	754	764	768
	Missing	40	39	38	57	60	50	46
Mean		3.35	3.30	3.01	2.96	2.98	3.36	3.23
Median	4.00	3.00	3.00	3.00	3.00	3.00	3.00	
Mode	4	3	3	3	4	4		

Operation Size 1

Statistics ${ }^{\text {a }}$

		Mandate ID	Restrict Vacc	Organic Prem	Drought Plan	BSE	Brucellosis
N	Valid	583	590	587	586	596	593
	Missing	27	20	23	24	14	17
Mean		3.08	2.55	3.66	4.31	3.83	3.80
Median	3.00	3.00	4.00	5.00	4.00	4.00	
Mode	3	1	4	5	5	5	

a. opsize $=1$

Statistics ${ }^{\text {a }}$

		Alt Ent	Market Alt	Market Assist	Ret Own	Alt Prod	Subsidy Elim	Fed Grazing
N	Valid	576	578	579	567	565	572	573
	Missing	34	32	31	43	45	38	37
Mean		3.45	3.32	3.03	2.98	3.00	3.40	3.26
Median		4.00	3.00	3.00	3.00	3.00	3.00	3.00
Mode	4	3	3	3	3	4	4	

a. opsize = 1

Operation Size 2

Statistics ${ }^{\text {b }}$

		Mandate ID	Restrict Vacc	Organic Prem	Drought Plan	BSE	Brucellosis
N	Valid	182	184	183	182	183	183
	Missing	7	5	6	7	6	6
Mean		2.97	2.45	3.63	4.15	3.61	3.62
Median	3.00	2.00	4.00	4.00	4.00	4.00	
Mode	3	1^{a}	4	5	5	5	

a. Multiple modes exist. The smallest value is shown
b. opsize $=2$

Statistics ${ }^{\text {a }}$

		Alt Ent	Market Alt	Market Assist	Ret Own	Alt Prod	Subsidy Elim	Fed Grazing
N	Valid	183	182	182	175	174	177	180
	Missing	6	7	7	14	15	12	9
Mean		2.99	3.23	2.93	2.86	2.87	3.19	3.13
Median	3.00	3.00	3.00	3.00	3.00	3.00	3.00	
Mode	3	3	3	3	3	4	3	

a. opsize $=2$

Operation Size 3

Statistics ${ }^{\text {b }}$

		Mandate ID	Restrict Vacc	Organic Prem	Drought Plan	BSE	Brucellosis
N	Valid	15	15	15	15	15	15
	Missing	0	0	0	0	0	
Mean		3.00	2.47	3.40	4.07	2.40	3.20
Median	3.00	2.00	4.00	4.00	2.00	3.00	
Mode	1^{a}	1	4	5	2	5	

a. Multiple modes exist. The smallest value is shown
b. opsize $=3$

Statistics ${ }^{\text {b }}$

		Alt Ent	Market Alt	Market Assist	Ret Own	Alt Prod	Subsidy Elim	Fed Grazing
N	Valid	15	15	15	15	15	15	15
	Missing	0	0	0	0	0	0	0
Mean		3.87	3.47	3.20	3.40	3.33	3.80	3.27
Median		4.00	4.00	3.00	4.00	4.00	4.00	4.00
Mode		3^{a}	4	5	4	5	1^{a}	

a. Multiple modes exist. The smallest value is shown
b. opsize $=3$

Part C: Drought and Sagebrush Management

Question 20

Procedure:

- "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- SAS Means procedure, UNIVARIATE procedure.
- SPSS descriptive statistics, frequency histogram.

Code:

```
data q20; set dat.inczero071105;
*ignores operations with less than 20 bred cattle;
if var330xx le 19 then delete;
*New operation sizes based on original strata;
if var330XX ge 20 and var330xX lt 300 then opsize=1;
if var330xx ge 300 and var330xx lt 1000 then opsize=2;
if var330xx ge 1000 then opsize=3;
```

Output:

Statistics
drght yrs

N	Valid	814
	Missing	0
Mean		4.75
Median	5.00	
Mode	5	
Std. Deviation	2.048	
Minimum	0	
Maximum	20	

Question 21

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not report negative drought impacts (i.e. who indicated 0 years in question 20-years of consecutive drought).
- SAS Means procedure.

Code:
*drops respondents who did not report negative drought impacts; if var530xx = 0 then delete;
Output:

VAR 568 XX	2003	759	6.75	16.70	0.00	100.00
VAR574XX	2003	759	0.52	5.06	0.00	100.00
			erien	2004 Al		
VAR544XX	2004	759	31.36	27.48	0.00	100.00
VAR549XX	2004	759	21.66	30.94	0.00	100.00
VAR554XX	2004	759	34.57	36.05	0.00	100.00
VAR559XX	2004	759	6.41	15.41	0.00	100.00
VAR564XX	2004	759	6.49	16.95	0.00	100.00
VAR 569 XX	2004	759	7.37	17.49	0.00	100.00
VAR 575 XX	2004	759	0.77	6. 93	0.00	100.00

ff
Changes Experienced in 2000 By Operation Size

VAR540XX	2000	569	16.72	23.85	0.00	100.00
VAR5 45 XX	2000	569	11.98	23.67	0.00	100.00
VAR5 $50 \times X$	2000	569	18.10	27.05	0.00	100.00
VAR555XX	2000	569	4.07	13.12	0.00	100.00
VAR5 $60 \times X$	2000	569	4.59	15.01	0.00	100.00
VAR565 XX	2000	569	3.67	12.43	0.00	100.00
VAR571XX	2000	569	0.15	1.94	0.00	30.00
			-			
VAR540XX	2000	176	14.31	19.94	0.00	100.00
VAR545XX	2000	176	11.95	22.74	0.00	100.00
VAR5 $50 \times X$	2000	176	18.58	25.67	0.00	100.00
VAR555XX	2000	176	4.91	15.13	0.00	100.00
VAR5 $60 \times X$	2000	176	3. 71	15.27	0.00	100.00
VAR5 65 XX	2000	176	4.39	14.72	0.00	100.00
VAR571XX	2000	176	0.14	1.88	0.00	25.00
			\cdots			
VAR540XX	2000	14	15.36	19.56	0.00	50.00
VAR545XX	2000	14	20.93	28.86	0.00	80.00
VAR550XX	2000	14	18.21	17.17	0.00	50.00
VAR555XX	2000	14	3. 21	6.68	0.00	20.00
VAR5 $60 \times X$	2000	14	2.86	4.69	0.00	10.00
VAR565 XX	2000	14	3.57	10.82	0.00	40.00
VAR571XX	2000	14	0.00	0.00	0.00	0.00

fff

\cdots opsize=1						
VAR541XX	2001	569	19.70	23.89	0.00	100.00
VAR546XX	2001	569	14.04	23.92	0.00	100.00
VAR551XX	2001	569	20.87	27.38	0.00	100.00
VAR556XX	2001	569	4. 53	12. 55	0.00	100.00
VAR561XX	2001	569	5. 53	16.71	0.00	100.00
VAR5 66 XX	2001	569	4.40	13.79	0.00	100.00
VAR5 72 XX	2001	569	0.19	2.11	0.00	40.00
opsize=2						
VAR541XX	2001	176	19.53	21.32	0.00	100.00
VAR546XX	2001	176	15.22	24.47	0.00	100.00
VAR551XX	2001	176	21.41	25.74	0.00	100.00
VAR556XX	2001	176	5.76	14.99	0.00	100.00
VAR561XX	2001	176	4.33	15.51	0.00	100.00
VAR $566 \times X$	2001	176	5.27	15.13	0.00	100.00
VAR5 72 XX	2001	176	0. 51	4.44	0.00	50.00
VAR541XX	2001	14	21.43	18. 13	0.00	50.00
VAR546XX	2001	14	42.14	39.06	0.00	100.00
VAR551XX	2001	14	32.14	32.80	0.00	100.00
VAR5 56 XX	2001	14	5.21	10.03	0.00	33.00
VAR561XX	2001	14	3.21	5. 41	0.00	15.00
VAR566XX	2001	14	4.64	11. 51	0.00	40.00
VAR5 $72 \times X$	2001	14	0.00	0.00	0.00	0.00

fff
Changes Experienced in 2002 By Operation Size

VAR542XX	2002	569	27.57	26.25	0.00	100.00
VAR547XX	2002	569	20.07	29.15	0.00	100.00
VAR552XX	2002	569	28.88	31.36	0.00	100.00
VAR557XX	2002	569	6.06	14. 21	0.00	100.00
VAR562XX	2002	569	6.16	16. 29	0.00	100.00
VAR567XX	2002	569	6. 34	16. 21	0.00	100.00
VAR573XX	2002	569	0.44	5.16	0.00	100.00
VAR5 22 XX	2002	176	29.48	25.02	0.00	100.00
VAR547XX	2002	176	23.10	30.25	0.00	100.00
VAR5 52 XX	2002	176	31.86	31.45	0.00	100.00
VAR557XX	2002	176	8.55	17.73	0.00	100.00
VAR5 62 X	2002	176	7.42	19.64	0.00	100.00
VAR567XX	2002	176	8.62	19.19	0.00	100.00
VAR573XX	2002	176	0.71	6.43	0.00	75.00

VAR5 42 XX	2002	14	22.86	21.19	0.00	60.00
VAR547XX	2002	14	43.57	30.72	0.00	100.00
VAR5 52 XX	2002	14	35.71	29.60	0.00	100.00
VAR557XX	2002	14	8. 57	13.36	0.00	45.00
VAR5 62 XX	2002	14	7.50	11. 56	0.00	30.00
VAR567XX	2002	14	6.43	14.99	0.00	50.00
VAR573XX	2002	14	0.00	0.00	0.00	0.00
ff						
		 0			
VAR543XX	2003	569	28.16	25.73	0.00	100.00
VAR548XX	2003	569	20.25	28.71	0.00	100.00
VAR553XX	2003	569	27.95	30.49	0.00	100.00
VAR558XX	2003	569	6. 20	14.91	0.00	100.00
VAR563XX	2003	569	6.08	16.19	0.00	100.00
VAR568XX	2003	569	6.49	16.33	0.00	100.00
VAR5 74 XX	2003	569	0.41	4.73	0.00	100.00
opsize=2						
VAR543XX	2003	176	28.26	23.12	0.00	100.00
VAR548XX	2003	176	22.47	30.07	0.00	100.00
VAR553XX	2003	176	29.27	31.06	0.00	100.00
VAR5 58 XX	2003	176	8.20	18.69	0.00	100.00
VAR563XX	2003	176	6.51	18.16	0.00	100.00
VAR568XX	2003	176	7.43	18.04	0.00	100.00
VAR574XX	2003	176	0.91	6.17	0.00	50.00
VAR543XX	2003	14	23.43	20.15	0.00	60.00
VAR548XX	2003	14	39.64	27.63	0.00	100.00
VAR553XX	2003	14	33.21	27.71	0.00	100.00
VAR558XX	2003	14	6.07	7.89	0.00	20.00
VAR563XX	2003	14	4.64	8.87	0.00	30.00
VAR568XX	2003	14	8.57	14.73	0.00	40.00
VAR574XX	2003	14	0.00	0.00	0.00	0.00
ffffffffffffffff Chff						
VAR549XX	2004	569	20.60	30.63	0.00	100.00
VAR554XX	2004	569	34.21	36.17	0.00	100.00
VAR559XX	2004	569	5.95	14.61	0.00	100.00
VAR564XX	2004	569	6.41	16.49	0.00	100.00
VAR569XX	2004	569	7.01	16.94	0.00	100.00
VAR575XX	2004	569	0.75	7.00	0.00	100.00
\cdots opsize=2						
VAR544XX	2004	176	31.11	26.73	0.00	100.00
VAR549XX	2004	176	23.90	31.59	0.00	100.00
VAR554XX	2004	176	35.82	36.23	0.00	100.00
VAR559XX	2004	176	8. 06	18.11	0.00	100.00
VAR564XX	2004	176	7.05	18.93	0.00	100.00
VAR569XX	2004	176	8.70	19.63	0.00	100.00
VAR575XX	2004	176	0.88	7.00	0.00	70.00
opsize=3						
	2004	14	22.71	18.50	0.00	60.00
VAR549XX	2004	14	36.43	31.95	0.00	100.00
VAR554XX	2004	14	33.93	30.14	0.00	100.00
VAR559XX	2004	14	4. 29	7. 56	0.00	20.00
VAR564XX	2004	14	2.79	4.58	0.00	10.00
VAR569XX	2004	14	5.36	8.43	0.00	20.00
VAR575XX	2004	14	0.00	0.00	0.00	0.00

Question 22

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- SAS Means procedure.

Output:

VAR595XX	Add Graz	759	0.16	0.37	0.00	1.00
VAR600XX	Add Wnt F	759	0.35	0.48	0.00	1.00
VAR605XX	Erly Wean	759	0.11	0. 31	0.00	1.00
VAR610XX	Gmt Feed	759	0.15	0.36	0.00	1.00
VAR615XX	Gmt Incom	759	0.04	0.20	0.00	1.00
VAR620XX	Off Farm	759	0.36	0.48	0.00	1.00
VAR625XX	Alt Lvsk	759	0.03	0.17	0.00	1.00
VAR630XX	Alt Crop	759	0.01	0.10	0.00	1.00
VAR635XX	Ot her	759	0.02	0.15	0.00	1.00
var 635×1	\# Strat 00	759	1. 59	1. 62	0.00	9.00
		Str	Used i	I Ran		
VAR581XX	P Hrd Liq	757	0.35	0.48	0.00	1.00
VAR586XX	T Hrd Liq	759	0.02	0.14	0.00	1.00
VAR591XX	Sell Yrlg	759	0.08	0.27	0.00	1.00
VAR596XX	Add Graz	759	0.21	0.41	0.00	1.00
VAR601XX	Add Wnt F	759	0.44	0.50	0.00	1.00
VAR606XX	Erly Wean	759	0.15	0.36	0.00	1.00
VAR611XX	Gmt Feed	759	0.23	0.42	0.00	1.00
VAR616XX	Gmt Incom	759	0.06	0.24	0.00	1.00
VAR621XX	Off Farm	759	0.40	0.49	0.00	1.00
VAR626XX	Alt Lvsk	759	0.03	0.17	0.00	1.00
VAR631XX	Alt Crop	759	0.01	0.11	0.00	1.00
VAR636XX	Ot her	759	0.03	0.18	0.00	1.00
var 636×1	\# Strat 01	757	2.03	1.73	0.00	10.00
fff						
VAR582XX	p Hrd Liq	Str 759	Used 0.50	O. 50	0.00	1.00
VAR587XX	T Hrd Liq	759	0.02	0.14	0.00	1.00
VAR592XX	Sell Yrlg	759	0.12	0.32	0.00	1. 00
VAR597XX	Add Graz	759	0.29	0.45	0.00	1. 00
VAR602XX	Add Wnt F	759	0. 59	0.49	0.00	1. 00
VAR607XX	Erly Wean	759	0.29	0.45	0.00	1.00
VAR612XX	Gmt Feed	758	0.52	0.50	0.00	1.00
VAR617XX	Gmt Incom	759	0.10	0.30	0.00	1.00
VAR622XX	Off Farm	759	0.42	0.49	0.00	1. 00
VAR627XX	Alt Lvsk	759	0.04	0.20	0.00	1.00
VAR632XX	Alt Crop	759	0.02	0.13	0.00	1.00
VAR637XX	Other	759	0.04	0.19	0.00	1.00
var 637×1	\# Strat 02	758	2. 95	1.85	0.00	10.00

VAR614XX	Gmt Feed	569	0.39	0.49	0.00	1.00
VAR619XX	Gmt Incom	569	0.09	0.29	0.00	1.00
VAR624XX	Off Farm	569	0.49	0.50	0.00	1.00
VAR629XX	Alt Lvsk	569	0.07	0.26	0.00	1.00
VAR634XX	Alt Crop	569	0.03	0.17	0.00	1.00
VAR639XX	Other	569	0.04	0.19	0.00	1. 00
			- ops			
VAR584XX	P Hrd Liq	176	0.49	0.50	0.00	1.00
VAR589XX	T Hrd Liq	176	0.05	0.22	0.00	1.00
VAR594XX	Sell Yrlg	175	0.19	0.40	0.00	1.00
VAR599XX	Add Graz	176	0.36	0.48	0.00	1.00
VAR604XX	Add Wnt F	176	0.64	0.48	0.00	1.00
VAR609XX	Erly Wean	176	0.36	0.48	0.00	1.00
VAR614XX	Gmt Feed	176	0.52	0.50	0.00	1. 00
VAR619XX	Gmt Incom	176	0.13	0.33	0.00	1.00
VAR624XX	Off Farm	176	0.32	0.47	0.00	1. 00
VAR629XX	Alt Lvsk	176	0.05	0.22	0.00	1.00
VAR634XX	Alt Crop	176	0.05	0.21	0.00	1.00
VAR639XX	Other	176	0.04	0.20	0.00	1.00
			$\therefore 0 p s$			
VAR5 $84 X X$	P Hrd Liq	14	0.36	0.50	0.00	1. 00
VAR589XX	T Hrd Liq	14	0.00	0.00	0.00	0.00
VAR594XX	Sell Yrlg	14	0.21	0.43	0.00	1.00
VAR599XX	Add Graz	14	0.50	0.52	0.00	1.00
VAR604XX	Add Wnt F	14	0.64	0.50	0.00	1.00
VAR609XX	Erly Wean	14	0.36	0.50	0.00	1.00
VAR614XX	Gmt Feed	14	0.43	0.51	0.00	1.00
VAR619XX	Gmt Incom	14	0.07	0.27	0.00	1.00
VAR624XX	Off Farm	14	0.14	0.36	0.00	1. 00
VAR629XX	Alt Lvsk	14	0.21	0.43	0.00	1.00
VAR634XX	Alt Crop	14	0.07	0.27	0.00	1.00
VAR639XX	Other	14	0.07	0.27	0.00	1.00

Question 23

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not answer "yes" or "no".
- SAS Means procedure.

Code:

```
*forces either a yes or no answer;
var651x1 = var650xx + var651xx;
if var651x1 = 0 then delete;
if var651x1 = 2 then delete;
```


Output:

Question 24

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not answer "yes" or "no".
- SAS Means procedure.

Code:

```
*forces either a yes or no answer;
var653x1 = var652xx + var653xx;
if var653x1 ne 1 then delete;
Output:
```


Question 25

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not report replacing their herd in question 24.
- Excluded respondents with answers not summing to 100%.
- SAS Means procedure.

Code:

```
*limited to respondents who replaced their herd;
if var652xx = 1 then delete;
*excludes respondents with responses that did not sum to 100;
var663x1 = var660xx + var661xx + var662xx + var663xx;
if var663x1 ne 100 then delete;
```


Output:

Question 26

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not respond to any sagebrush question.
- SAS Means procedure.

Code:

```
*excludes respondents who did not respond at all to any sagebrush
question;
var693x1 =
var670xx + var671xx + var672xx + var673xx + var674xx +
var675xx + var676xx + var677xx + var678xx + var679xx +
var680xx + var681xx + var683xx +
var690xx + var691xx + var692xx + var693xx;
if var693x1 = 0 then delete;
```

Output:

Question 27

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did respond to any sagebrush question.
- SAS Means procedure.

Code:

```
*excludes respondents who did not respond at all to any sagebrush
question;
var683x1 =
var670xx + var671xx + var672xx + var673xx + var674xx +
var675xx + var676xx + var677xx + var678xx + var679xx +
var680xx + var681xx + var683xx +
var690xx + var691xx + var692xx + var693xx;
if var683x1 = 0 then delete;
```

Output:

Question 28

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not respond to any sagebrush question.
- SAS Means procedure.

Code:
*excludes respondents who did not respond at all to any sagebrush question;
var683x1 =
var670xx + var671xx + var672xx + var673xx + var674xx +
var675xx + var676xx + var677xx + var678xx + var679xx +
var680xx + var681xx + var683xx +
var690xx + var691xx + var692xx + var693xx;
if var683x1 = 0 then delete;
Output:

Question 18-Extra

- Procedure: "no zeros" dataset.
- SAS Frequency procedure.

Code:
data q18x; set dat.nozero051106;
*Includes only phone responses;
if phone = . then delete;
Output:

Part D: Demographic Information

Question 29

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- GIS mapping from Excel spreadsheet.

Question 30

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Limited responses to a range of actual Wyoming elevations.
- SAS Means procedure.

Code:

```
*Limit to 2,000 - 13,000 feet;
if var901xx le 2000 then delete;
if var901xx > 13000 then delete;
Output:
```

Analysis Variable : Vargolxx elev				
$\begin{aligned} & 770 \\ & f f f \end{aligned}$	5365.90	1216.16	3000.00	10000.00
Ranch Elevation- By Operation Size				
		- opsize		
572	5268.12	1164.05	3100.00	10000.00
183	5610.27	1326size	3000.00	9650.00
15	6113.33	- opsize	4300.00	8100.00

Question 31

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- SAS Means procedure.

Output:

Question 32

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Eliminated respondents who did not indicate any age category.
- SAS Means procedure.

Code:

```
*Excludes respondents who did not respond to any age category;
var917x1 = var910xx + var911xx + var912xx + var913xx +
var914xx + var915xx + var916xx + var917xx;
if var917x1 = 0 then delete;
```

Output:

Variable	Label	N	Mean	Dev	i mum	i mum
Primary Operator Age						
VAR914XX	35-44	792	0.11	0.31	0.00	1.00
VAR911XX	45-49	792	0.16	0.37	0.00	1.00
VAR915XX	50-54	792	0.20	0.40	0.00	1.00

VAR912 XX	55-59	792	0.15	0.36	0.00	1.00
VAR916XX	60-64	792	0.13	0.34	0.00	1.00
VAR913XX	65-69	792	0.10	0.30	0.00	1.00
VAR917XX	$70+$	792	0.14	0.35	0.00	1.00
fff Primary Operator Age- By Operation Size						
VAR914XX	35-44	593	0.12	0.33	0.00	1.00
VAR911 X	45-49	593	0.15	0.36	0.00	1.00
VAR915 XX	50-54	593	0.19	0.39	0.00	1.00
VAR912 XX	55-59	593	0.16	0.37	0.00	1. 00
VAR916XX	60-64	593	0.12	0.32	0.00	1.00
VAR913 XX	65-69	593	0.11	0.31	0.00	1. 00
VAR917XX	$70+$	593	0.13	0.34	0.00	1.00
opsize=2						
VAR910XX	25-34	185	0.01	0.10	0.00	1.00
VAR914XX	35-44	185	0.08	0.27	0.00	1.00
VAR911 XX	45-49	185	0.19	0.39	0.00	1.00
VAR915 XX	50.54	185	0.22	0.42	0.00	1.00
VAR912 XX	55-59	185	0.11	0.32	0.00	1.00
VAR916XX	60.64	185	0.19	0.40	0.00	1.00
VAR913 XX	65-69	185	0.08	0.27	0.00	1. 00
VAR917XX	70 +	185	0.15	0.36	0.00	1.00
opsize=3						
VAR910XX	25-34	14	0.07	0.27	0.00	1.00
VAR914XX	35-44	14	0.07	0.27	0.00	1.00
VAR911 X	45-49	14	0.14	0.36	0.00	1.00
VAR915 XX	50-54	14	0.29	0.47	0.00	1.00
VAR912 XX	55-59	14	0.21	0.43	0.00	1.00
VAR916XX	60-64	14	0.00	0.00	0.00	0.00
VAR913 XX	65-69	14	0.07	0.27	0.00	1. 00
VAR917XX	70 +	14	0.14	0.36	0.00	1.00

Question 33

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Excluded respondents who did not indicate any education category.
- SAS Means procedure.

Code:

*Excludes respondents who did not respond to any education category;
var925x1 = var920xx + var921xx + var922xx + var923xx + var924xx +
var925xx;
if var925x1 = 0 then delete;
Output:

VAR923XX	Sm Cl g	189	0.33	0.47	0.00	1.00
VAR921XX	Tech	189	0.01	0.10	0.00	1.00
VAR924XX	BA	189	0.22	0.41	0.00	1.00
VAR922XX	Sm Grd	189	0.05	0.22	0.00	1.00
VAR925XX	Grd Dg	189	0.09	0.29	0.00	1.00
			\cdots			
VAR920XX	HS	15	0.13	0.35	0.00	1.00
VAR923XX	SmCl g	15	0.13	0.35	0.00	1.00
VAR921XX	Tech	15	0.00	0.00	0.00	0.00
VAR924XX	BA	15	0.60	0. 51	0.00	1.00
VAR922 XX	Sm Grd	15	0.07	0.26	0.00	1.00
VAR925XX	Grd Dg	15	0.07	0.26	0.00	1.00

Question 34

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Limited responses to 100 years of experience.
- SAS Means procedure.

Code:
*maximum years of experience set at 100;
if var926xx gt 100 then var926xx = .;
Output:

Question 35

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- SAS Means procedure.

Output:

Question 36

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Eliminated income percentages of 0%.
- SAS Means procedure.

Code:
*eliminates income percentages of 0;
if var932xx = 0 then var932xx = .;
Output:

Question 37

- Procedure: "including zeros" dataset.
- Excluded producers with less than 20 bred cattle.
- Sorted data into three operation sizes based on number of bred cows.
- Eliminated respondents who did not indicate any income category.
- SAS Means procedure.

Code:

```
*eliminates non-response to every category;
var948x1 = var940xx + var941xx + var942xx + var943xx + var944xx
+ var945xx + var946xx + var947xx + var948xx;
if var948x1 = 0 then delete;
```

Output:

V	Labe	N	Mean	Dev	mum	mum
ffffffff	fffffff	ff f	ffffffffffff	ffff	ffff	ffff
			Gross Ranch			
VAR940XX	< 1 K	745	0.00	0.06	0.00	1.00
VAR941XX	1.5K	745	0.02	0.13	0.00	1.00
VAR942XX	5-10K	745	0.03	0.18	0.00	1.00
VAR943XX	10.25K	745	0.15	0.35	0.00	1.00
VAR944XX	25.50K	745	0.20	0.40	0.00	1.00
VAR945XX	50.100K	745	0.20	0.40	0.00	1.00
VAR946XX	100.250K	745	0.24	0.43	0.00	1.00
VAR947XX	250.500 K	745	0.12	0.33	0.00	1.00
VAR948XX	> 500 K	745	0.04	0.20	0.00	1.00
ffffffff	ffffffff	ffff	ffffffffffff	ffff		ffff
fffeff	ffffff		oss Ranch Sal	rati		
			\cdots Op			
VAR940XX	< 1 K	555	0.01	0.07	0.00	1.00
VAR941XX	1.5K	555	0.02	0.15	0.00	1.00

VAR942XX	5.10K	555	0.04	0.20	0.00	1.00
VAR943XX	10.25K	555	0.19	0.39	0.00	1.00
VAR944XX	25.50K	555	0.26	0.44	0.00	1.00
VAR945 XX	50.100 K	555	0.25	0.43	0.00	1.00
VAR946XX	100-250K	555	0. 19	0.39	0.00	1.00
VAR947XX	250.500 K	555	0.04	0.20	0.00	1.00
VAR948XX	> 500 K	555	0.01	0.07	0.00	1.00
VAR940XX	< 1K	176	.. 0	0.00	0.00	0.00
VAR941XX	1.5K	176	0.00	0.00	0.00	0.00
VAR942XX	5-10K	176	0.01	0.08	0.00	1.00
VAR943XX	10.25K	176	0.01	0.11	0.00	1.00
VAR944XX	25-50K	176	0.04	0. 20	0.00	1.00
VAR945 XX	50.100 K	176	0.09	0. 28	0.00	1.00
VAR946XX	100.250K	176	0.41	0.49	0.00	1.00
VAR947XX	250.500 K	176	0.36	0.48	0.00	1.00
VAR948XX	> 500 K	176	0.09	0.28	0.00	1.00
VAR940XX	< 1K	14	.- 0.00	0.00	0.00	0.00
VARg41XX	1.5K	14	0.00	0.00	0.00	0.00
VAR942XX	5.10K	14	0.00	0.00	0.00	0.00
VAR943XX	10.25K	14	0.00	0.00	0.00	0.00
VAR944XX	25-50K	14	0.00	0.00	0.00	0.00
VAR945XX	50.100K	14	0.00	0.00	0.00	0.00
VAR946XX	100.250K	14	0.00	0.00	0.00	0.00
VAR947XX	250.500K	14	0. 14	0. 36	0.00	1.00
VAR948XX	> 500 K	14	0.86	0.36	0.00	1.00

Appendix D: Responses to "Other, Specify"

Section A: General Ranch Description

Question 1, Variable 125: Other types of private land.
"illegible" (2)
5 acres
alfalfa
alfalfa circle
AUM
Beans (4)
bldg/house
corrals, house, buildings
CRP (11)
CRP grass
Deeded (2)
dry land grass
fallow - farm yard
fallow lands
farm stead, "illegible," hay land
farmstead
grazing "illegible"
grazing assoc.
haylage
home site
home site, roads, ditches, dry ground
homestead (2)
house
house and building (2)
irrigated and sub-irrigated pasture
irrigated grass
irrigated pasture (6)
oat hay
oats
owned acres
pasture
pasture irrigation
pasture with corral private forest
reservation land
riparian, willows, sage benches river and creek bottom
row crops, bad lands, drought fallow
sold cows in 2003
sugar beet (2)
summer fallow (2)
tribal
wheat
winter wheat
W.I.R.

Question 2, Variable 152: Other ranch enterprises / activities.
"illegible"
160 goats just purchased
4 cows
75% from crop sales
all other come from other sources
all summer is pasture for other
ranchers
barley, hay
brand
bucking bulls
bulls (7)
calf crop share
CBM, hay
chickens
coal miner
contract work for coal mine
cow calf stocker
crops (3)
crops (dry land wheat)
CRP (2)
CRP, wheat
cull cows and bulls
custom hay stacking
direct marketing "natural beef" to
consumers
direct meat sales
drought conditions
dry land wheat
dude ranch (2)
equipment, custom haying
farming (2)
finish steers to slaughter
govt. programs
grain sale
grain, hay, leases cropland for winter
pasture
grain, row crop
grain, row crop
grass sales, hay
ground is leased out guiding, ditch rider
hay (26)
hay sales
hay, cash crops
hay, custom work
hay, grazing
hay, horse boarding
hay, hunt
hay, misc.
hay, pasture
hay, pasture, misc.
honey
horse boarding
horses
hunting (3)
irrigated crops
lease pasture
lease pasture for cattle grazing
lease pasture for yearling steers
leases grazing acres to someone else logging
long horns for roping
malt barley, grass seed, fed ag
program, etc
market steers
minerals
miniature Hereford cattle
mules
my farming/ranch is a hobby
operation we have accepted no govt.
funding for anything
off farm work
old roping cattle
outfittin', other
outside the ranch work
pasture
pasture cattle, hentiy
pasture lease
pasture yearlings
pasture yearlings during summer for feedlot
pasturing cattle for others, hay
purchased black angus
ranch leased to a neighbor
registered bulls
rent pasture, hay
rented out land (both pasture and
cropland
rodeo livestock
roping cattle
roping steers - rental
roping steers and heifers
roping steers, purchased calves
roping, team penning, horse nutrition
clinics
run a truck
running others cows and graze
S.S.
seed stock
seed stock (bulls and heifers)
seed, hay, grain
sell bulls (2)
sell pairs
sell pasture
sheep
short of water - won't take in stock
slaughter steers, hay
steers
steers, heifers
summer grazing
takes in cattle for others winter
months till calving
takes in cattle for summer grazing
teacher salary
team penning steers
team roping and rodeo cattle tourism
wages and custom hire
we sold our cows no grass/drought wheat
wheat, land rent
wheat, millet, hay, pasture lease works off-farm
yearling bulls
yearlings
yearlings - buy spring sell in fall.
take cattle in for grazing for 4 or 5 mo.

Question 5, Variable 202: Other herd management techniques.

baud calves	ID tag
baugs ID	ivomec
branding (9)	pour on
buck	preg. test
bugs	scour guard

scour guard, viti A
tatoo
taxes, heat, power, leases,
registrations, misc.
vira shield 5

Question 6, Variable 222: Other ranch expenses.

"illegible" feed
after math and feed
AI (3)
all other expense categories
background, feed lot
balance of schedule F-IRS
B.L.M., forest
breeding expense, utilities, electricity
breeding fees, replacement heifer
development, utilities
cake (5)
cake, cubes
capital purchase
certified hay
contract haying
contract services, food, housing,
supplies, etc
crystal lick
custom feeding, pasture lease,
trucking, insurance
custom feeding, taxes, insurance, other
depreciation, grazing lease,
insurance, utilities, taxes
depreciation, insurance, rent, supply,
taxes, utilities, vehicle
electric power for irrigation, etc.
electric, taxes
electricity (4)
equipment
equipment purchase, estate purchase of ranch, private lease, public lease equipment purchased, taxes, supplies, insurance, living expenses equipment rent, ranch lease

everything else

fair, horse shows, recreation
family, fence, pasture, etc.
farm/ranch supplies, repairs
feedlot
fence repair
fencing (2)
fencing and corral maintenance
fencing, repairs (2)
fencing, repairs to buildings
filler hog
fixed leases, utilities, legal acct,
depreciation
freight
freight, grazing fees, dues, insurance, leases, supplies, property taxes,
depreciation, water
freight, insurance, taxes, rent, supplies, utilities
general supplies
grain hay
grass
grass hay (4)
grass hay (drought related buying)
grass hay, leases
grass, alfalfa
grass, hay
grass/al-mix
grass/grass alfalfa, mixed hay grazing range
hay (2)
hay cubes, grass, grass/alfalfa
hay, alfalfa cubes, pasture lease
hay, misc.
hay, silage
haying, weed control,
vehicle/machine repairs
horse feed
horse purchases
horses, fence cost
house payment
idle
improvement
insurance (6)
insurance health, education, property insurance, family living, utilities, supplies
insurance, farm repairs, supplies, other fuel, phone, taxes, lease payments insurance, just trying to live insurance, misc. insurance, rent, grazing fees, taxes, supplies
insurance, supplies, misc.
insurance, taxes
insurance, taxes, grazing fees (state and fed), freight, trucking, brand inspect, beef check off, utilities (phone, power, etc), commissary, postage, office expense insurance, taxes, supplies,
"illegible," depreciation, "illegible
insurance, trucking, brand
inspection, pasture rent
insurance, trucking, dues, taxes,
supplies, lease
insurance, utilities
insurance: crop, property, health
irrigation water
irrigation (3)
irrigation, electricity
irrigation, labor
irrigation, leased
irrigation, property tax, pasture rent,
feedlot, hay, feed, misc., supplies,
services
irrigation, sales comm, brand
inspection, truck, expenses,
depreciation, supplies, taxes,
insurance, utilities
irrigation, taxes, living
land
land lease
land lease, insurance, ranch/shop
supplies
land payment (2)
land rental
lease (9)
lease bulls, insurance
lease, misc., insurance
leased
leased cattle
leased grass
leases (4)
leases, permits
leases, supplies, utilities, taxes
leases, utilities, misc.
living expenses/home maintenance
living, food, clothes, etc.
living, rent: land, machinery
loan
loan, living
machinery
machinery purchase
machinery replacement, taxes,
insurance, licenses, supplies
marketing, sales, trucking, office
admin, depreciation
mat
mgt. lee. Rent
misc. (16)
misc. (lease, insurance)
misc., insurance
misc., supplies
misc., taxes
misc. supplies
mortgage
new machinery, ditch work, fencing,
buildings, repair
niche market product development, water development, other
parts, materials
pasture (8)
pasture cost
pasture lease (5)
pasture lease, equipment
pasture rent (8)
payments, living
power, pasture
profit, work
prom, show expense
protein supplements
purchasing land
ranch insurance, state lease, utilities, living
ranch supplies
registration, misc.
rent (3)
rent, insurance
rent, machinery, misc.
rent, share crop
rent, taxes, insurance, electricity
stuff
summer pasture
sunflower
supplement
supplies (2)
supplies, B.L.M. lease, Forest service lease, trucking, insurance, taxes, depreciation, etc
supplies, equipment
supplies, machine payments
supplies, new equipment
supplies, repairs
taxes, utilities, insurance, repair, maintenance, supplies
tax, insurance
taxes (3)
taxes, electricity
taxes, insurance
taxes, insurance, utilities, leases, etc taxes, leases, maintenance, insurance, trucking
taxes, licenses, office supplies, work clothes, utilities, machinery purchases, insurance, irrigation
taxes, rent, seeds, insurance, utilities, office
taxes, utilities, insurance, misc.,
irrigation, etc
taxes, water
tools, etc.
truck and trailer payments
trucking (3)
trucking, misc., property taxes, utilities, leases, insurance utilities equipment utilities, general maintenance utilities, insurance, taxes, license plates, commissions, employee benefits, health insurance, care, employee wages
utilities, insurance, taxes, water charges, equipment purchases, parts utilities, lease
utilities, misc. utilities, misc., etc.
utilities, repairs, tax, insurance utilities, rentals
vehicle license, insurance, taxes vehicle, equipment purchases vehicle, insurance, utilities, water, misc., food, clothes
wages, "illegible," fence, gas, post water (3)
water rights
water, fence, food, feedlot water, parts, supplies weed control, taxes, telephone, leases, groceries, trucking wheat hay

Question 8, Variable 318: Other on- and off-farm feed sources.

"illegible"
alfalfa, sheep
all hay bought
beet pulp
breeder sales, bulls
cake (13)
corn
corn balls
corn silage (8)
crystal lick
custom hay/shapes
ear corn (2)
fall tritcare
go to feed lot
grass (3)
grass grazing (2)
grass hay
hay meadows
hay stubble
horse feed irrigate grass
leased pasture
minerals (3)
minerals and salts (5)
molasses tubs
nutralix
oat pellets
pasture (2)
pasture bought MT
pellets
protein supplement, cake, lick barrels protein tubs
range land
rent pasture
rough pasture
salt
salt, minerals
silage (3)
trade hay for summer pasture with a
friend
triticale
use pastured grass
winter pasture
yearling bought in spring sold in
Dec.

Question 9, Variable 354: Other livestock (peak number owned, months owned, and months fed).

"illegible"	daughter owns ewes and lambs	roping steers, purchased calves
2 lamas, 2 goats	dog (2)	shared cattle
4-h	ewes, bucks	sheep (20)
bull calf, open cows	ewes, lambs, bucks	sheep on feed
bull calves (10)	fat cattle	sheep, goats
bull calves for sale, Holstein heifers	hogs	short term breed cows
bull yearlings	llamas	steers
bulls (2)	llamas, emu, alpacas	summer st
bulls breeding	mules	working dogs
calves, bulls (bucking)	purchased steer calves	yearling bulls (2)
chickens (2)	purchased yearling	yearlings
dairy cow	roping cattle	

Question 10, Variable 369: Other methods for selling calves.

1) only sell late/undesirable calf at
weaning $=100 \%$ 2) Retain ownership
of yearling steers through feedlot
process sold "illegible" $=100 \% 3$)
Replacement yearling heifers sold to
feedlot private treaty $=100 \%$
breeding bulls
bucking bulls bull test auction

bulls	meat "illegible"	retained open - sold directly to
cattle buyer	none retained	consumers
consignment	purchased yearlings	retained steers/heifers sold directly to
cull cows	purchased yearlings finished sold in	customers as fed beef
depending on prices	meat	retained steers/heifers sold to
don't sell just furnish kids with	ranch auction	consumers as good eating
slaughtered beef	replacement heifers, breeding bulls	sale barn
kept replacement	retained and fed out some steers,	sell bulls for people to eat
kids meat	heifers; sold directly to consumers	sold as yearling "illegible
leased animals		sold to feedlots (2)

Question 11, Variable 398: Other Cattle Classes for Sale Weights and Months

bred heifers (2)	culls (3)	
dry cows (3)	open cows (4)	
breeding cattle	dry cows and bulls	open replacement heifers
buffalo	drys	pairs
bull calves (2)	goat	roping steers
bull calves 1 yr	Holstein springers	roping steers, purchased calves
bull calves, yearlings	lambs (4)	slaughter steers
bulls (3)	lambs, llama	yearling breading bulls
calves born after May 1	market steers	yearling bulls (2)
canners	old cows (2)	yearling steers
cull cows (9)	open and cull cows and bulls	
cull cows and calves		

Question 12, Variable 413: Other methods for purchasing cattle.
"illegible" only bulls AI
all purchased are ET calves raised by someone else
breeder producer private sale bull sales (8)
buy bulls only - bull sale don't purchase any cattle
fence post
home bred
home raised line breeding internal replacement keep our own replacements newspaper ads, fliers, word of mouth order buyer
packing horse private auction (2)
private auction, not sale barn
private auctions
raise all our own
raised (4)
raised sheep and bulls ranch auction ranch raised replacements sell as pairs
we sell cattle an do not purchase any other than the head bulls

Section B: Other Production and Marketing Practices

Question 18, Variable 512: Other general farm / ranch practices.
burning sage brush
cactus is more prevalent and needs to be addressed cactus spraying
Canadian thistle chop the sage brush club calves
don't worry about the wildlife, the wolves will take care of it all (including people) elk feed ground on ranch, no problems
feeder association
field threatens our B.L.M. aums gas fighting prairie dogs, spray cactus flower
have a lot of soap weed growing
"illegible"
have no sage brush have no sagebrush on my land have sprayed formadog for prickly pear and larkspur
have to have career off farm, not enough work on ranch - all successful ranches do improve fishery in stream larkspur
natural fires controls sagebrush no sage brush on land owned no sage brush on our operation prairie dog control (2) rabbit brush infestation control retired
sage brush is not a problem but cheat grass is
sagebrush control does not endanger wildlife or cattle. It increases grass, nothing eats sagebrush unless there is no grass sell organic beef and reg. show stock spraying buck brush and cactus spring sprayed 10 years ago too many deer! we are an irrigated place - water availability is our main factor. weed control
wolves and grizzly bears are the biggest detriment to private property rights and ranch operations and wild life preservation

Section C: Drought and Sagebrush Management

Question 21, Variable 570: Other changes experienced as a result of recent drought.

"illegible"
\% increase in weeds

200 no hay put up
acre left fallow
bought fed and sold cattle so weight and breeding stayed up.
bought more outside hay supplements
calving earlier - feeding more
cattle, hay
compared to feed cost increase $\%$ a normal year.
cow reduction
cows never bred up because "illegible" of "illegible"
develop stock water
don't know all grass leased out
drought killed much of the meadow grass. Had to reseed
got our butt kicked
grass hoppers
grazing cost increase
had to haul water to B.L.M./hauling currently
hauling water
have not run cattle
heat stress reduced crops
I no longer know what a normal year is! I'm down 50% in numbers
land rent to run cows on
light calves bring more $\$$. Co-Op feed program pays excellent program for calves "illegible" \$
Mom and Dad sold their herd so it is hard to compare.
money
no grazing land
no hay put up - grazed
note: I buy feed to compensate
pasture grazing fees
pasture water
pregnancy and calving rates
production was actually up
sold 20% of cows
water
we cut our number of cattle to keep weight up
we leased other pasture
we've been trying to plow and rework our hay fields since
1998 - haven't been able do to drought
what is a normal year
would want some one to go through this with me yearling operation

Question 22, Variable 640: Other strategies used for each drought year (2000-2004).

alternative on-farm enterprise
author and publisher of book and other materials
bought less
bought less heifers
cattle moved around pasture (pasture rotation)
commercial weed spraying
continue to lower cattle numbers and praise god. He got you out of debt before it hit and continued to get worse each year corn silage made the difference in getting cows bred up couldn't purchase needed heifers/no grass custom machinery repair work
did not hay as much because they did have the moisture that would make it flourish
don't keep any replacement heifers
don't believe in government welfare
drought did not affect my herd size
everything is affected
fed calves did not bring back to grass. Moved cows off
premire to additional feed source
fed hay all summer 2 yrs ago to all but 80 head trucked out to pasture
found more pasture land and reduced herd size
go in debt further
going to have to have trees logged because of beetles in trees.
The beetles are swarming because of drought and no heavy snow and cold weather to kill off larvae
grazed CRP
Grazed more of the hay fields and bought hay to replace the loss of production.
ground ahs been leased and is owned by 5 in a partnership no livestock in produced
had 530 head cows 2001 - reduced to 180 in 2003 same has today
hauling water
hauling water for cattle - no runoff
Held hay over to cover loss of 2 nd cutting.
herd capacity is down
I am a "illegible" operator. With water in short supply, my
(\#'s and risk) are kept down. We do lambs also. I'd raise more cows if enough water to grow enough pasture
I cut the grass and alfalfa along the highway in a 10 mile radius of our place put it up as loose hay for the winter. I grow my own feed, so I'll feed them
I had sold my cattle prior to the drought. The land has easily supported the few horses I own
I have received all my allocated water for my hay operation.

I have substantial savings and retirement benefits since 1999 install water lines, tanks, crossfence, haul water
installed center pivot irrigation
Jack Daniels
just because
just spread them out, less cattle in each pasture
leasing pasture preachers mule
limit the number of cattle we take each summer
liquidated sheep enterprise
methane gas development
moved cows onto meadow early and fed longer
moved to Iowa
no operational changes
only graze yearlings 6-7 months
pasture rotation
pastured CRP put up CRP hay
purchased irrigated hay land
put cows out on share
put in irrigation system - little water
put on share
reduce purchase of number of heifers
reduce steers by 15%
reduced \# of yearlings custom pastured
reduced leasing out pastures
reduced number of mouthe I took in "illegible"
reduced number of pasture cattle we take in.
reduced numbers grazing grass
reduced the number of cattle taken in for others
reduced the number of pasture cattle reduced the amount of hay sold
reduced the number of steers bought
reduced total number of A.U.M.s we took in for grazing June

- October
rented summer range and bought hay
retained land in old hay fields that might get 1 or 2 irrigations
rather than cropping to maintain feed supply
rodeo co. makes saddles
sell less hay
sent pasture cattle home early
served on a board $\$ 4-6000$ per year
sold cows bought horses
sold larger ranch and bought a smaller one
sold less hay, used one hay meadow for summer pasture
sold off cattle 2001 (estimated year)
sold older cows
sold timber
stop leasing
summer feed (hay and corn)
switched to selling at weaning - no backgrounding
trapping on our own ranch in 03 and 04
traveled 60 miles away - leased land because none in near area to lease
water projects
we didn't have much change
we have always grazed below capacity. 100% irrigation reduction - late water rights - none available, reservoir empty except for spring runoff
we custom swath, rake and bale hay telone to work all winter hauling beets or loading beets to sugar factory

Question 27, Variable 686: Other methods used to control sagebrush.

"illegible" (2)	equipment and heavy short term 2-4-D with diesel air way
grazing impact	
antelope	farming up
backhoe	feed hay in sage
beating (2)	feed on it
blade	feed on it in winter
bladeing, mowing	feeding on it
brush aerator	feeding on sage area
brush beater (5)	flood irrigate
brush beating and aerator	forage interseed grass and kochia
brush hog (16)	goats
brush hog, rotary mower	grade off in winter
brush mower	grassing rotation
cattle	graze cattle
chipping	grazing
chop, brush hog	grazing and feeding
chopping (4)	grazing goats
chops	grazing management
clearing with tractor	grubbing
continuous spring cropping (oats) 3	hand chopping
years	I don't
control in fields only	I have a lot of sage chickens
controlled grazing	I have no sagebrush
cutting	impact
deer herd	irrigation (4)
dig up and reseed	leave in natural state
drag harrow	let it "illegible"
dragging	mechanical
dragline	mechanical
dug up	mow (8)
	mow, reseed with grass

mowing
my mountain burned up, 2002
NA
nature
no control (30)
our sage brush is vital to calving
over grazing
past years of sheep
planned grazing
plowing (3)
removal
rotate grazing
rotary mowed
scraped with blade and piled to burn
later
sheep and goats
sheep grazing
shovel
some tillage
spike (3)
spray
tillage
tilled
tilled up
watering kills the sage brush
we like to have some
winter feeding
winter graze
winter feeding on sage brush

Appendix E: Survey Instrument

Wyoming Beef Cattle Producers Survey

We would prefer the primary ranch operator complete this survey. Your voluntary and confidential participation in this survey is much appreciated. Please answer the following questions to the best of your ability. If you do not feel comfortable answering a question, please omit it and continue with the rest of the survey. No individual information will be released. Thank you.

Part A. General Ranch Description - The first part of this survey asks questions about your operation. Each farm/ranch has its own unique characteristics and production practices. We would like to know the characteristics and production practices used on your operation.

1. How much land in your ranch fits into the following categories, and is the land owned or leased?

Types of Land	Acres
Pastureland, Rangeland	${ }^{110}$
Harvested Cropland for Grain	${ }^{113}$
Harvested Cropland for Silage	${ }^{116}$
Irrigated \& Sub Irrigated Hay	${ }^{119}$
Dry Land Hay	${ }^{122}$
Other (specify)	
Forest Service	
BLM	
State Lands	${ }^{126}$

Percent Leased

2. What percentage of your annual gross sales comes from each type of ranch enterprise/practice?
(Percentages must total to 100\%).

Percent		Percent		Percent		Percent	
Cow/Calf		Backgrounding		Feedlot		Sheep	
CowYearling	144	Club-calves	${ }^{145}$	Replacement Heifers	${ }^{146}$	Horses	${ }^{147}$
Buffalo	${ }^{48}$	Goats	149	Dairy Cattle	${ }^{150}$	Hogs	${ }^{151}$
Other (specify)							153

3. What percentage of calving occurs during each month? (Percentages must total 100\%)

Percent	
Jan.	${ }^{160}$
Feb.	${ }^{164}$
March	${ }^{168}$

Percent	
April	${ }^{161}$
May	165
June	169

Percent	
July	${ }^{162}$
Aug.	${ }^{166}$
Sept.	${ }^{170}$

Percent

Oct.	${ }^{163}$
Nov.	${ }^{167}$
Dec.	${ }^{171}$

4. What percentage of weaning occurs during each month? (Percentages must total 100\%)

Percent		Percent		Percent		Percent	
Jan.	${ }^{172}$	April		July		Oct.	
Feb.	${ }^{76}$	May	177	Aug.	${ }^{178}$	Nov.	179
March	180	June	181	Sept.	182	Dec.	183

5. Which herd management techniques do you practice for most of the herd each year (Please check all that apply)?

Practice

Vaccinate	${ }^{190}$
Deworm	${ }^{192}$
Insect Control	${ }^{194}$
Implant	${ }^{196}$
Dehorn	${ }^{198}$
Castrate	${ }^{200}$
Other (specify)	${ }^{203}$

Practice

Animal ID System	${ }^{191}$
Body Condition Scoring	${ }^{193}$
Pregnancy Check	${ }^{195}$
Breeding Soundness Exam	${ }^{197}$
Artificial Insemination	${ }^{199}$
Veterinarian Consultation	

6. In a typical year what percentage of the total ranch expenses are due to the following?
(Percentages must total 100\%)

Expenses	Percent
Purchased Livestock	${ }^{210}$
Alfalfa Hay	${ }^{212}$
Grain (corn, barley, oats)	${ }^{214}$
Feed Concentrates	${ }^{216}$
Salt \& Mineral	${ }^{218}$
Fertilizer, Chemicals, Seeds	${ }^{220}$
Other (specify)	${ }^{223}$

Expenses	Percent
Veterinarian/Health Supplies	${ }^{211}$
Labor-hired/Contract labor	${ }^{213}$
Diesel, Gasoline, Natural Gas Fuels	${ }^{215}$
Interest Expense	${ }^{217}$
Professional Services	
Machinery Repair Services	${ }^{211}$

7. In a typical year how many of the following family and non-family workers does this operation employ and in which months? (Please include both paid and non-paid employees)

Number

Family Employed

Year - round		Jan.	$\begin{array}{\|c\|} \hline \text { Feb. } \\ \\ \hline 232 \\ \hline \end{array}$	Mar.	Apr.	May	$\begin{array}{\|r\|} \hline \text { Jun. } \\ 236 \\ \hline \end{array}$	Jul.	Aug.	Sept.	Oct. 240	Nov.	Dec.	$\begin{gathered} \text { All } \\ \underline{243} \end{gathered}$
Part-Time or seasonal		Jan. 245	Feb.	Mar.	Apr.	$\begin{array}{r} \text { May } \\ 249 \\ \hline \end{array}$	Jun.	Jul.	$\begin{array}{\|r\|r} \text { Aug. } \\ \hline 252 \\ \hline \end{array}$	Sept.	Oct. 254	Nov.	Dec. 256	All

Non-Family	Number Employed	Circle the Months the Part-time/Seasonal Labor are Employed												
Year - round		Jan.	Feb. 262	Mar.	Apr.	$\sqrt{\text { May }}$	Jun.	Jul.	$\overline{\text { Aug. }}$	Sept.	$\begin{array}{\|l\|} \hline \hline \text { Oct. } \\ \hline \end{array}$	Nov.	Dec. 272	All
Part-Time or seasonal		Jan.	Feb. 276	Mar.	Apr.	May 279	Jun.	Jul.	Aug.	Sept.	Oct. 284	Nov.	Dec.	${ }_{\text {All }}$

8. How much of the following feed sources come from on-farm, how much from off-farm, and how long do you feed them in a typical year? (Please include the month you start and finish feeding)

Feed Sources	On-Farm Sources	Off-Farm Sources	Month Usually Start Feeding (1-12)	Month Usually Finish Feeding (1-12)
Grass Hay, Other Hay (tons)			${ }^{292}$	${ }^{293}$
Alfalfa (tons)	${ }^{294}$	295	${ }^{296}$	${ }^{297}$
Protein Supplement (tons)	${ }^{298}$	29	300	301
Concentrates (tons)	302	${ }^{303}$	${ }^{304}$	${ }^{305}$
Corn Stalks/Stubble (acres)	306	${ }^{307}$	308	309
Other Crop Aftermath (acres)	${ }^{310}$	${ }^{311}$	312	${ }^{313}$
All Grain (bushels)	${ }^{314}$	${ }^{315}$	316	${ }^{317}$
Other (specify) ${ }^{318}$	319	32	321	${ }^{32}$

9. Please indicate the peak number of livestock typically owned, and the months they are fed on raised or purchased feed other than pasture grass during a typical year.
(If owned all year, please indicate with a 12)

Classes	\# Owned
Bred Cows	${ }^{330}$
Steer Calves	${ }^{333}$
Heifer Calves	${ }^{336}$
Replacement Heifers	${ }^{342}$
Retained Yearlings	${ }^{345}$
Fattened Cows	${ }^{348}$
Herd Bulls	${ }^{351}$
Horses	
Other (specify)	

10. What percentage of your calves are sold using the following methods?
(Percentages must total 100\%)

Methods	Percent	Methods	Percent
Sale Barn		Retained slaughter steers/heifers - Sold as live animals	
Video Auction	362	Retained slaughter steers/heifers - Sold on grid/in the meat	${ }^{63}$
Private Sale/Treaty to Buyer	364	Retained steers/heifers - Sold directly to consumers as grass fed beef or natural beef	365
Forward Cash Contracts	${ }^{366}$	Retained steers/heifers - Sold directly to consumers as certified organic beef	${ }^{367}$
Futures \& Options		Other (specify)	
Website listing			

11. What are the typical sale weights/maintenance weights of each class of cattle on your operation, and in what month(s) are they most typically sold? (Please indicate the weight and month)

Classes	Weights (lbs)	Month Typically Sold (1-12)
Weaned Steer Calves	${ }^{380}$	
Weaned Heifer Calves	${ }^{362}$	
Backgrounded Calves	${ }^{384}$	
Long Yearlings	${ }^{386}$	${ }^{387}$
Finished Cattle	388	389
Replacement Heifers		
Bred Cows	392	${ }^{393}$
Fattened Cows	394	395
Herd Bulls	396	${ }^{397}$
Other (specify) ${ }^{398}$	399	400

12. What percentage of purchased cattle are acquired using the following methods?
(Percentages must total 100\%)

Methods	Percent	Methods		Percent
Sale Barn	410	Website listing		411
Video Auction	412	Other (Specify)	413	414
Private Sale/Treaty	415			
Forward Cash Contracts	16			

Part B. Other Production and Marketing Practices

The following questions are designed to understand your use of and opinions about a number of different practices. We would like to know if you have considered the following:
13. Do you currently retain ownership of your calves into an off-farm feedlot?
(Check appropriate response)
\square Yes $\quad \square \quad{ }^{422}$ No (Skip to 15.)
14. If you checked "yes" to question 13 , where are the retained calves fed, and how far away from home are they? (Check appropriate response and fill in number of miles)

15. If you checked "no" to question 13, would you consider retaining calves into an off-farm feedlot? (Check appropriate response)

16. If you checked "yes" to question 15 , where would you prefer to feed these calves, and how far away from home would you prefer they be? (Check appropriate response and fill in number of miles)

\square Out of State
17. How many head would you direct market to consumers across state lines if a USDA inspected processor was available? (Enter the number of head)

18. Have you considered or are you currently doing any of the following practices?
(Check the most appropriate response for each practice)

Practice	Currently Doing	Have Considered	Have Not Considered	Will Not Do
Organic Beef (USDA Certified)	460	461	462	463
Grass Fed/Natural Beef	464	465	466	67
Direct Customer Marketing	468	469	470	471
Joining a Beef Cooperative/Alliance	472	473	474	475
National Individual Animal Identification System	476	477	478	479
Changing to Different Calving Season	480	${ }^{481}$	482	483
Starting an Additional Enterprise	484	485	486	87
Selling Recreation (fishing, hunting, camping, etc.)	488	489	490	491
Working off-farm/ranch	492	493	494	495
Sagebrush cover reduces forage yields on the privately owned lands that you ranch.	496	497	498	499
Sagebrush cover reduces forage yields on the public lands that you ranch.	500	501	502	503
Endangered wildlife and possible habitat destruction are a concern for you in controlling sagebrush on your ranch.	504	505	506	507
The presence of cheat grass affects your sagebrush management decisions.	508	509	510	511
Other (describe) 512	$2{ }^{513}$	514	515	516

19. Please circle the answer that best indicates your level of agreement/disagreement with the following statements about future changes that may occur in the beef industry or your operation.

	Strongly Disgree (1)			Strongly Agree (5)	
A mandated cattle identification system is needed.	1	2	3	4	5
Government restrictions on the use of antibiotics, growth implants, and vaccinations are necessary.	1	2	3	4	5
Beef consumers are willing to pay a price premium for organic, grass fed, and origin identified beef.	1	2	3	4	5
A drought contingency plan is important for beef producers in Wyoming.	1	2	3	4	5
BSE (mad cow disease) will have a big impact on the beef industry in the future.	1	2	3	4	5
Brucellosis will have a big impact on the beef industry in the future.	1	2	3	4	5
I need to consider alternative enterprises to stay in business.	1	2	3	4	5
I need to learn more about marketing alternatives to stay in business.	1	2	3	4	5
I need assistance in approaching/assessing alternative markets for my cattle.	1	2	3	4	5

I need to learn more about retained ownership, alliances, and forward pricing to become more competitive.	1	2	3	4	5
I need to learn more about alternative production practices and alternative risk management strategies for my current enterprises to stay in business.	1	2	3	4	5
Government subsidies to ranchers/farmers will be reduced or eliminated in the future.	1	2	3	4	${ }_{5}^{528}$
Livestock grazing on federal land will be reduced or eliminated in the future.	1	2	3	4	5

Part C. Drought and Sagebrush Management

20. How many consecutive years was/has your operation been negatively impacted by the most recent drought? \square
21. Please indicate changes experienced each year as a result of the most recent drought compared to normal year. (Please indicate percent impact for the appropriate year for each area affected in your operation; indicate no impact by entering 0)

YEAR

Changes Experienced	2000	2001	2002	2003	2004
Grazing capacity \% reduction compared to a normal year.					
Irrigation water supplies \% reduction compared to a normal year.	545	546	547	548	54
Winter feed production \% reduction compared to a normal year.	550	551	52	553	54
Average sale weights \% reduction compared to a normal year.	${ }^{55}$	556	557	${ }^{588}$	59
Percent weaned \% reduction compared to a normal year.	0		${ }^{62}$	${ }^{563}$	
Owner equity \% reduction in compared to a normal year.			567	${ }^{68}$	
Other (specify and list by year) 570	${ }^{71}$	52	573	574	575

22. What strategies did you use to deal with drought during each year it affected your operation (Check all that apply in every year)?

YEAR

Strategy	2000	2001	2002	2003	2004
Partial herd liquidation	580	581	582		
Total herd liquidation	${ }^{585}$	${ }^{566}$	${ }^{587}$	${ }^{588}$	
Selling retained yearlings	590	591	592	593	[94
Lease/purchase additional grazing	595	596	597	598	599
Purchase additional winter feed	${ }^{600}$	${ }^{601}$	${ }^{602}$	${ }^{603}$	
Early weaning of calves to reduce feed needs	605	606	607	608	609
Participated in government feed assistance program	610	611	612	613	${ }^{614}$
Participated in government income assistance program	615	616	617	618	619
Earn off-farm income	620	621	622	${ }^{623}$	${ }^{624}$
Added alternative livestock enterprise	625	${ }^{626}$	${ }^{627}$	${ }^{628}$	${ }^{629}$
Added alternative crop enterprise	${ }^{630}$	${ }^{631}$	${ }^{632}$	${ }^{633}$	${ }^{634}$
Other	${ }^{635}$	${ }^{636}$	${ }^{637}$	${ }^{638}$	${ }^{639}$
If you checked other, please describe:					${ }^{640}$

23. If you liquidated part, or all, of your herd did you use income averaging to reduce income tax liability associated with increased income from liquidation sale with the hope of replacements being purchased within 24 months? (Check appropriate response)

24. If you liquidated part, or all of your herd, have you replaced them with purchased breeding livestock to pre-drought levels? (Check appropriate response)

25. If you answered yes to question 24, what was the breakdown of the type of breeding livestock purchased? (Percentages must total 100\%)

Type of Breeding Livestock Percent of Total Purchased

Heifers	
Bred Heifers	${ }^{661}$
Mature Cows	${ }^{662}$
Bred Cows	${ }^{663}$

26. Please indicate the total number of acres on your ranch that have the following abundance of sagebrush. (Please write number of acres within each box)

	None	Light	Moderate	Abundant	Heavy
Privately owned lands	670	${ }^{671}$	${ }^{672}$	${ }^{673}$	${ }^{674}$
Public lands	675	676	677	${ }^{678}$	679

27. Please check which methods you use to control sagebrush on your ranch.

Burning $\quad \square \quad$| ${ }^{680}$ | Other (please indicate method) | ${ }^{668}$ |
| :--- | :--- | :--- |

28. If you control sagebrush using burning, please answer the following.

Private Lands
Public Lands
How long after burning do you wait to put cattle back on the burned area? (years)
What is the typical size of your burn? (acres)

Part D. Demographic Information

For the final part of the survey we would like to ask some questions about you. These questions help to ensure that our sample survey is representative of the population. All the information you provide is completely confidential.
29. What is your mailing zip code?

30. At what elevation is your ranch located (approximately)? (Feet above sea level)
31. Please indicate the gender of the primary operator. (Check the most appropriate response)

Female

32. Please indicate primary operator's current age (Check appropriate category):

25-34		45-49	11	55-59	ग12	65-69	913
35-44	914	50-54	915	60-64	${ }_{916}$	70 or older	917

33. Please indicate primary operator's highest level of education (Check most appropriate category):

| High School | | ${ }^{920}$ | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Some College | | | |

34. How many years of experience do you have raising beef cattle?
(Please indicate \# of years)
35. Are you or your spouse employed off farm?
(Check if employed off farm, even if only part time)

36. What percentage of your household income comes from ranching or farming? \square
37. Please indicate last year's annual gross ranch sales. (Please check most appropriate category)

Less than \$1,000		\$1,000-4,999		\$5,000-9,999	942
\$10,000-24,999	943	\$25,000-49,999	944	\$50,000-99,999	
\$100,000-249,999	946	\$250,000-500,000	94	over \$500,000	${ }^{948}$

38. Producer input is crucial to interpreting the data from this survey.

Would you be willing to be contacted by the University of Wyoming Department of Agriculture and Applied Economics to verify the findings of the survey?

If yes, please sign and date below. Thank you.
Signature \qquad Date \qquad
39. Are there any other comments or suggestions you would like to share with us for this survey?
(Please write your comments below)

[^0]: ${ }^{1}$ Sample size. Limiting valid responses for percentage of acres owned verses leased to answers summing to 100% resulted in lower response rates as indicated.
 ${ }^{2}$ Mean acres and mean percentages (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number).
 ${ }^{4}$ e.g. $\mathrm{X} \% / \mathrm{Y} \%$ with $\mathrm{X}=$ percent owned and $\mathrm{Y}=$ percent leased.

[^1]: ${ }^{1}$ Sample size. Limiting valid responses to answers summing to 100% dropped 11 respondents (7 from small and 3 medium operation size).
 ${ }^{2}$ Frequency count of percent gross annual sales coded as a binary variable.

[^2]: ${ }^{1}$ Sample size. Limiting valid responses to answers summing to 100 percent dropped 29 respondents.
 ${ }^{2}$ Mean percentages (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number).

[^3]: ${ }^{1}$ Sample size. Limiting dataset to answers summing to 100% dropped 141 respondents (102 from small, 37 from medium, and 2 from large operations.
 ${ }^{2}$ Mean percentages (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number).

[^4]: ${ }^{1}$ Sample size. Excluding respondents for all of question 8 who did not enter any amount for on- or off-farm feed sources dropped 81 respondents. Excluding respondents for months fed who did not enter a valid number (1-12) dropped respondents as indicated.
 ${ }^{2}$ Mean amounts (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number). For months fed, calculated from variable coded 1-12.

[^5]: ${ }^{1}$ Sample size. Excluding respondents who did not enter any amount for on- or off-farm feed sources dropped 81 respondents for this question. Of these none were for large operations.
 ${ }^{2}$ Mean amounts (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number).

[^6]: ${ }^{1}$ Sample size.
 ${ }^{2}$ Mean number (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number).

[^7]: ${ }^{1}$ Sample size. ${ }^{2}$ Mean number (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number).

[^8]: ${ }^{1}$ Sample size. Forcing some positive answer to either weight or month sold for any cattle class dropped 59 respondents. Minimum weight was set at 100 lbs for all calves and yearlings and 500 lbs for all adult cattle classes. Answers were eliminated for months sold that were not 1-12. This further reduced n for individual cattle classes as indicated in Table.
 ${ }^{2}$ Means (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation (rounded to the nearest whole number). Standard deviation for months was calculated from variable for months coded from $1-12$ (e.g., a standard deviation of 3 indicates a variance of 3 months).

[^9]: ${ }^{1}$ Sample size. Calculated from 70 respondents who answered "yes" to question 13-Do you currently retain ownership?
 ${ }^{2}$ Mean (of binary variable reported as a percentage) of respondents reporting "yes" (rounded to the nearest whole percentile).
 ${ }^{3}$ Standard deviation.
 ${ }^{4}$ Mean distance (rounded to the nearest whole number).

[^10]: ${ }^{1}$ Sample size. Eliminating those who did not respond to any part of question 18 or gave incomplete or nonsensical answers dropped 112 respondents.
 ${ }^{2}$ Mean of binary variable reported as a percentage (rounded to the nearest whole percentile).
 ${ }^{3}$ Standard deviation.

[^11]: ${ }^{1}$ Sample size. Eliminating those who did not respond to any part of question 18 or gave incomplete or nonsensical answers dropped 112 respondents (88 of these were from small operations).
 ${ }^{2}$ Mean of binary variable reported as a percentage (rounded to the nearest whole percentile).
 ${ }^{3}$ Standard deviation.

[^12]: ${ }^{1}$ Sample size. Eliminating those who did not respond to any part of question 18 or gave incomplete or nonsensical answers dropped 112 respondents (21 of these were from medium operations).
 ${ }^{2}$ Mean of binary variable reported as a percentage (rounded to the nearest whole percentile).
 ${ }^{3}$ Standard deviation.

[^13]: ${ }^{1}$ Sample size. Eliminating those who did not respond to any part of question 18 or gave incomplete or nonsensical answers dropped 112 respondents (3 of these were from large operations).
 ${ }^{2}$ Mean of binary variable reported as a percentage (rounded to the nearest whole percentile).
 ${ }^{3}$ Standard deviation.

[^14]: ${ }^{1}$ Mean (rounded to the nearest tenth) along with its standard deviation in parentheses.
 ${ }^{2}$ Median.
 ${ }^{3}$ Mode or modes. ${ }^{\text {a }}$ Multiple modes-lowest is reported.
 ${ }^{4}$ Sample size. Responses of " 0 " were recoded as missing.

[^15]: ${ }^{1}$ Sample size. Excluding respondents who answered " 0 " to question 20 dropped 55 respondents, 13 from medium operations.
 ${ }^{2}$ Mean percentages (rounded to the nearest whole percent).
 ${ }^{3}$ Standard deviation.

[^16]: ${ }^{1}$ Sample size. Excluding respondents who answered "0" to question 20 dropped 55 respondents.
 ${ }^{2}$ Mean of a binary variable is reported as a percentage (rounded to the nearest whole percent).
 ${ }^{3}$ Standard deviation.

[^17]: ${ }^{1}$ Sample size. Excluding respondents who answered " 0 " to question 20 dropped 55 respondents. 41 of these were from small operations.
 ${ }^{2}$ Mean of a binary variable is reported as a percentage (rounded to the nearest whole percent).
 ${ }^{3}$ Standard deviation.

[^18]: ${ }^{1}$ Sample size. Excluding respondents who did not answer any part of questions 26-28 dropped 117 respondents, 87 of these were from small and 27 from medium operations.
 ${ }^{2}$ Mean acres (rounded to the nearest whole number).
 ${ }^{3}$ Standard deviation(rounded to the nearest whole number).

[^19]: ${ }^{1}$ Sample size.
 ${ }^{2}$ Mean of binary variable reported as a percentage.
 ${ }^{3}$ Standard deviation.

