Wyoming Ranch Tools

Master Hay Grower

Bridger Feuz

UW Extension - Livestock Marketing Specialist

Agenda

- Why economic analysis
- Wyoming Ranch Tools
- Partial Budgeting
- Buy Hay / Sell Cows Example
- Net Present Value
- Center Pivot Investment Example

Overview

Overview

Dealing with change

- Whole Farm/Enterprise Budget
- How do you accurately depict the implications of a change in a Farm or Enterprise Budget
- Improving Yield
- Can you just change the yield in your budget and evaluate the change in revenue?
- Why/Why not?

Goal

- Determine if you will be better or worse off
- Not for determining overall profitability
- Example;
- If you are losing money selling calves and you decide to retain ownership, this analysis will tell you if you will be better financially. However, you may still lose money (Just less).
- Go back to the whole farm budget to determine profitability

Partial Budgeting

- Useful as an intermediate term analysis
- Best adapted to analyzing relatively small changes in the whole ranch plan
- Contains only those income and expense items that will change if the proposed modification in the ranch plan is implemented
- Larger changes can be analyzed if incorporated with an enterprise budget or whole farm budget
- Result is an estimate of the increase or decrease in returns

Partial Budgeting

- Systematically organizes the answers to four questions

1. What new or additional costs will be incurred?
2. What current income will be lost or reduced?
3. What new or additional income will be received?
4. What current costs will be reduced or eliminated?

Partial Budget Example

- Current
- 300 Cows
- Only enough hay for 140 Cows
- Proposed Change
- Buy Hay for the remaining 160 cows
- Analyze the impact if shortage is a single year
- Analyze over a 4 year time frame

What new or additional costs will be ${ }^{\text {Extension }}$ incurred?

- Hay
- Cow Maintenance
- Miscellaneous

What current income will be lost or Extension

 reduced?- Selling culled pairs
- Selling hay

What new or additional income will be ${ }^{\text {dxension }}$ received?

- Selling calves

What current costs will be reduced or ${ }^{\text {Extension }}$ eliminated?

- Bred Cows

Wyoming Master Stockman Partial Budget Tool								UNIVERSIIV - OWYOMING
Proposed Change		Sell 160 of 300 cows / Buy Hay						
Additional Costs				Additional Income				
Description	Number of Units	Price/ Cost	Total	Description	Number of Units	Price/ Cost	Total	
$\begin{aligned} & \text { Hay } 3.25 \text { ton } \times 160 \\ & \text { hd } \\ & \hline \end{aligned}$	520	\$200.00	\$104,000.00	$\begin{aligned} & \text { Calves } 160 \times 90 \% \\ & \times 550 \times 4 \\ & \hline \end{aligned}$	316800	\$1.80	\$570,240.00	
$2 \text { ton norm }+1.25$ ton for drou			\$0.00	90% calf crop for 4 years ave			\$0.00	
Annual Cow Cost 3 yrs X 160	480	\$650.00	\$312,000.00				\$0.00	
cost for keeping the 160 cows			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
Reduced Income				Reduced Costs				
Description	Number of Units	Price/ Cost	Total	Description	Number of Units	Price/ Cost	Total	
Culled Pairs	160	\$1,400.00	\$224,000.00	Bred Cows	160	\$1,200.00	\$192,000.00	
$\begin{aligned} & \text { Hay Sales } 320 \text { ton } \\ & \times 3 \text { Yrs } \end{aligned}$	960	\$125.00	\$120,000.00	by keeping the 160 head you			\$0.00	
hay that could be sold if 160 c			\$0.00	at the end of the 4 years			\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
			\$0.00				\$0.00	
Total Additional Costs and Reduced Income \$760,000.00				Total Additional Income and Reduced Costs Net Income or Loss			$\begin{array}{r} \$ 762,240.00 \\ \$ 2,240.00 \end{array}$)

Sensitivity Analysis

- Helps in the decision making process when dealing with changing conditions
- Simple analysis
- Worst Case - Most Likely - Best Case
- More complex analysis
- Worst - Best Case Grid

Partial Budgeting Assignment

Dora's questions were really hard today...

How do you analyze an investment?

- Many times changing our operation requires a capital investment
- If it will take more than 1 or 2 years to pay for the investment we need to do a net present value analysis (NPV)

Investments add Risk

- Future income from the investment is not guaranteed
- The same capital could be used for other investments (Opportunity Cost)
- Savings
- Money Market
- Stocks
- Etc.
- Often times a producer must borrow the capital

What is NPV?

Wyoming Master Stockman
Net Present Value Analysis

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	
Annual Cost	500.00	500.00	500.00	500.00	500.00	500.00	500.00	Year 15
Annual Revenue	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	
	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13	Year 14	
Annual Cost	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
Annual Revenue	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00

Results

Results	
5 year NPV	$\$-1,227.02$
10 year NPV	$\$ 553.91$
15 year NPV	$\$ 1,949.32$
Break Even Year	9

			Discount			
Year	Total Cost	Revenue	Net	Factor	NPV	Cummulative NPV
1	$\$ 4,000.00$	$\$ 1,000.00$	$\$-3,000.00$	1	$\$-3,000.00$	$\$-3,000.00$
2	$\$ 500.00$	$\$ 1,000.00$	$\$ 500.00$	1.05	$\$ 476.19$	$\$-2,523.81$
3	$\$ 500.00$	$\$ 1,000.00$	$\$ 500.00$	1.10	$\$ 453.51$	$\$-2,070.29$
4	$\$ 500.00$	$\$ 1,000.00$	$\$ 500.00$	1.16	$\$ 431.92$	$\$-1,638.38$
5	$\$ 500.00$	$\$ 1,000.00$	$\$ 500.00$	1.22	$\$ 411.35$	$\$-1,227.02$

Center Pivot Example

- Yield Increase
- Will you increase or decrease irrigated acreage?
- How well are you currently able to cover the field with flood irrigation?
- Will an increase in water efficiency allow you to irrigate longer?
- Pumping Costs
- Diesel
- Electric
- Can you add AUMs by grazing irrigated aftermath?

Uinta County Example

- Before
- Flood Irrigated +/- 83 acres for about 2 tons per acre of grass hay
- . 5 AUM per acre aftermath grazing
- After
- Center Pivot Sprinkler installed on 145 acres including 40 acres that was brush ground
- Fuel cost is about $\$ 6,000$ per year
- Diesel motor provides power
- 2004 Production
- 60 acres in oats
- Total yield $=215$ tons $=1.5$ tons/acre
- 113.5 tons/60 acres $=1.9$ tons/acre of oats
- 101.5/85 = 1.2 tons/acre of grass hay
- Harvested a little over one AUM per acre of aftermath grazing

Cost Assumptions

- Investment Cost
- Pivot + Establishment - \$950/acre
- Annual Costs
- Pumping Cost - \$50/acre
- Additional Harvest Cost - \$30/acre
- Additional Fertilizer - \$20/acre
- Operation and Maintenance - \$40/acre
- Total Annual Costs - \$140/acre

EXTENSION

Return Assumptions

- Annual Returns
- 1.75 tons/acre @ \$110/ton
- . 5 AUM/Acre Grazing @ \$17/AUM
- Total Returns
- \$201/acre

NPV Tool

Standard NPV Econo Range Instructions Resources

Wyoming Master Stockman
 Net Present Value Analysis

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	
Annual Cost	140.00	140.00	140.00	140.00	140.00	140.00	140.00	Year 15
Annual Revenue	201.00	201.00	201.00	201.00	201.00	201.00	201.00	
	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13	Year 14	
Annual Cost	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00
Annual Revenue	201.00	201.00	201.00	201.00	201.00	201.00	201.00	201.00

Results

Results	
5 year NPV	$\$-672.70$
10 year NPV	$\$-455.42$
15 year NPV	$\$-285.18$
Break Even Year	None

NPV Tool

Standard NPV	Econo Range	Instructions	Resources

Wyoming Master Stockman

Net Present Value Analysis

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	
Annual Cost	140.00	140.00	140.00	140.00	140.00	140.00	140.00	Year 15
Annual Revenue	201.00	201.00	201.00	201.00	201.00	201.00	201.00	
	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13	Year 14	
Annual Cost	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00
Annual Revenue	201.00	201.00	201.00	201.00	201.00	201.00	201.00	201.00

Results

5 year NPV	$\$-197.70$
10 year NPV	$\$ 19.58$
15 year NPV	$\$ 189.82$
Break Even Year	10

Cokeville Example

- Before
- 380 acres flood irrigated for total yield of grass/alfalfa hay mix of 395 ton or 1.04 ton/acre
- After
- Two pivots 250 acre and 65 acre total 315 acre
- 80 fewer acres irrigated
- Pumping cost is $\$ 4.28 /$ acre
- Electric pump
- 2002-2004 Average Production
- Total yield $=800$ ton or 2.54 ton/acre
- Harvested a little over one AUM per acre of aftermath grazing

Cost Assumptions

- Investment Cost
- Pivot + Establishment - \$950/acre
- Annual Costs
- Pumping Cost - \$5/acre
- Additional Harvest Cost - \$20/acre
- Additional Fertilizer - None (Fertigation)
- Operation and Maintenance - \$40/acre
- Total Annual Costs - \$65/acre

Return Assumptions

- Annual Returns

- 1.1 tons/acre @ \$110/ton
- . 5 AUM/Acre Grazing @ \$17/AUM
- Total Returns
- \$129.50/acre

Results
Standard NPV Econo Range Instructions Resources

Wyoming Master Stockman
 Net Present Value Analysis

Investment	475.00
Interest Rate	5%

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	
Annual Cost	65.00	65.00	65.00	65.00	65.00	65.00	65.00	
Annual Revenue	129.50	129.50	129.50	129.50	129.50	129.50	129.50	Year 15
	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13	Year 14	
Annual Cost	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00
Annual Revenue	129.50	129.50	129.50	129.50	129.50	129.50	129.50	129.50

Results

5 rear NPV	$\$-181.79$
10 year NPV	$\$ 47.95$
15 year NPV	$\$ 227.96$
Break Even Year	$\mathbf{9}$

